| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-ltxr 8066 | 
. 2
⊢  < =
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪
{-∞}) × {+∞}) ∪ ({-∞} ×
ℝ))) | 
| 2 |   | df-3an 982 | 
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 <ℝ 𝑦)) | 
| 3 | 2 | opabbii 4100 | 
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 <ℝ 𝑦)} | 
| 4 |   | opabssxp 4737 | 
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 <ℝ 𝑦)} ⊆ (ℝ ×
ℝ) | 
| 5 | 3, 4 | eqsstri 3215 | 
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ⊆ (ℝ ×
ℝ) | 
| 6 |   | rexpssxrxp 8071 | 
. . . 4
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) | 
| 7 | 5, 6 | sstri 3192 | 
. . 3
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ⊆ (ℝ*
× ℝ*) | 
| 8 |   | ressxr 8070 | 
. . . . . 6
⊢ ℝ
⊆ ℝ* | 
| 9 |   | snsspr2 3771 | 
. . . . . . 7
⊢
{-∞} ⊆ {+∞, -∞} | 
| 10 |   | ssun2 3327 | 
. . . . . . . 8
⊢
{+∞, -∞} ⊆ (ℝ ∪ {+∞,
-∞}) | 
| 11 |   | df-xr 8065 | 
. . . . . . . 8
⊢
ℝ* = (ℝ ∪ {+∞,
-∞}) | 
| 12 | 10, 11 | sseqtrri 3218 | 
. . . . . . 7
⊢
{+∞, -∞} ⊆ ℝ* | 
| 13 | 9, 12 | sstri 3192 | 
. . . . . 6
⊢
{-∞} ⊆ ℝ* | 
| 14 | 8, 13 | unssi 3338 | 
. . . . 5
⊢ (ℝ
∪ {-∞}) ⊆ ℝ* | 
| 15 |   | snsspr1 3770 | 
. . . . . 6
⊢
{+∞} ⊆ {+∞, -∞} | 
| 16 | 15, 12 | sstri 3192 | 
. . . . 5
⊢
{+∞} ⊆ ℝ* | 
| 17 |   | xpss12 4770 | 
. . . . 5
⊢
(((ℝ ∪ {-∞}) ⊆ ℝ* ∧
{+∞} ⊆ ℝ*) → ((ℝ ∪ {-∞})
× {+∞}) ⊆ (ℝ* ×
ℝ*)) | 
| 18 | 14, 16, 17 | mp2an 426 | 
. . . 4
⊢ ((ℝ
∪ {-∞}) × {+∞}) ⊆ (ℝ* ×
ℝ*) | 
| 19 |   | xpss12 4770 | 
. . . . 5
⊢
(({-∞} ⊆ ℝ* ∧ ℝ ⊆
ℝ*) → ({-∞} × ℝ) ⊆
(ℝ* × ℝ*)) | 
| 20 | 13, 8, 19 | mp2an 426 | 
. . . 4
⊢
({-∞} × ℝ) ⊆ (ℝ* ×
ℝ*) | 
| 21 | 18, 20 | unssi 3338 | 
. . 3
⊢
(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞}
× ℝ)) ⊆ (ℝ* ×
ℝ*) | 
| 22 | 7, 21 | unssi 3338 | 
. 2
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪
{-∞}) × {+∞}) ∪ ({-∞} × ℝ))) ⊆
(ℝ* × ℝ*) | 
| 23 | 1, 22 | eqsstri 3215 | 
1
⊢  <
⊆ (ℝ* × ℝ*) |