ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelxr GIF version

Theorem ltrelxr 8032
Description: 'Less than' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltrelxr < ⊆ (ℝ* × ℝ*)

Proof of Theorem ltrelxr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltxr 8011 . 2 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
2 df-3an 981 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦))
32opabbii 4082 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦)}
4 opabssxp 4712 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦)} ⊆ (ℝ × ℝ)
53, 4eqsstri 3199 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ⊆ (ℝ × ℝ)
6 rexpssxrxp 8016 . . . 4 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
75, 6sstri 3176 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ⊆ (ℝ* × ℝ*)
8 ressxr 8015 . . . . . 6 ℝ ⊆ ℝ*
9 snsspr2 3753 . . . . . . 7 {-∞} ⊆ {+∞, -∞}
10 ssun2 3311 . . . . . . . 8 {+∞, -∞} ⊆ (ℝ ∪ {+∞, -∞})
11 df-xr 8010 . . . . . . . 8 * = (ℝ ∪ {+∞, -∞})
1210, 11sseqtrri 3202 . . . . . . 7 {+∞, -∞} ⊆ ℝ*
139, 12sstri 3176 . . . . . 6 {-∞} ⊆ ℝ*
148, 13unssi 3322 . . . . 5 (ℝ ∪ {-∞}) ⊆ ℝ*
15 snsspr1 3752 . . . . . 6 {+∞} ⊆ {+∞, -∞}
1615, 12sstri 3176 . . . . 5 {+∞} ⊆ ℝ*
17 xpss12 4745 . . . . 5 (((ℝ ∪ {-∞}) ⊆ ℝ* ∧ {+∞} ⊆ ℝ*) → ((ℝ ∪ {-∞}) × {+∞}) ⊆ (ℝ* × ℝ*))
1814, 16, 17mp2an 426 . . . 4 ((ℝ ∪ {-∞}) × {+∞}) ⊆ (ℝ* × ℝ*)
19 xpss12 4745 . . . . 5 (({-∞} ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → ({-∞} × ℝ) ⊆ (ℝ* × ℝ*))
2013, 8, 19mp2an 426 . . . 4 ({-∞} × ℝ) ⊆ (ℝ* × ℝ*)
2118, 20unssi 3322 . . 3 (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)) ⊆ (ℝ* × ℝ*)
227, 21unssi 3322 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))) ⊆ (ℝ* × ℝ*)
231, 22eqsstri 3199 1 < ⊆ (ℝ* × ℝ*)
Colors of variables: wff set class
Syntax hints:  wa 104  w3a 979  wcel 2158  cun 3139  wss 3141  {csn 3604  {cpr 3605   class class class wbr 4015  {copab 4075   × cxp 4636  cr 7824   < cltrr 7829  +∞cpnf 8003  -∞cmnf 8004  *cxr 8005   < clt 8006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pr 3611  df-opab 4077  df-xp 4644  df-xr 8010  df-ltxr 8011
This theorem is referenced by:  ltrel  8033
  Copyright terms: Public domain W3C validator