Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelxr GIF version

Theorem ltrelxr 7818
 Description: 'Less than' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltrelxr < ⊆ (ℝ* × ℝ*)

Proof of Theorem ltrelxr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltxr 7798 . 2 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
2 df-3an 964 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦))
32opabbii 3990 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦)}
4 opabssxp 4608 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦)} ⊆ (ℝ × ℝ)
53, 4eqsstri 3124 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ⊆ (ℝ × ℝ)
6 rexpssxrxp 7803 . . . 4 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
75, 6sstri 3101 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ⊆ (ℝ* × ℝ*)
8 ressxr 7802 . . . . . 6 ℝ ⊆ ℝ*
9 snsspr2 3664 . . . . . . 7 {-∞} ⊆ {+∞, -∞}
10 ssun2 3235 . . . . . . . 8 {+∞, -∞} ⊆ (ℝ ∪ {+∞, -∞})
11 df-xr 7797 . . . . . . . 8 * = (ℝ ∪ {+∞, -∞})
1210, 11sseqtrri 3127 . . . . . . 7 {+∞, -∞} ⊆ ℝ*
139, 12sstri 3101 . . . . . 6 {-∞} ⊆ ℝ*
148, 13unssi 3246 . . . . 5 (ℝ ∪ {-∞}) ⊆ ℝ*
15 snsspr1 3663 . . . . . 6 {+∞} ⊆ {+∞, -∞}
1615, 12sstri 3101 . . . . 5 {+∞} ⊆ ℝ*
17 xpss12 4641 . . . . 5 (((ℝ ∪ {-∞}) ⊆ ℝ* ∧ {+∞} ⊆ ℝ*) → ((ℝ ∪ {-∞}) × {+∞}) ⊆ (ℝ* × ℝ*))
1814, 16, 17mp2an 422 . . . 4 ((ℝ ∪ {-∞}) × {+∞}) ⊆ (ℝ* × ℝ*)
19 xpss12 4641 . . . . 5 (({-∞} ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → ({-∞} × ℝ) ⊆ (ℝ* × ℝ*))
2013, 8, 19mp2an 422 . . . 4 ({-∞} × ℝ) ⊆ (ℝ* × ℝ*)
2118, 20unssi 3246 . . 3 (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)) ⊆ (ℝ* × ℝ*)
227, 21unssi 3246 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))) ⊆ (ℝ* × ℝ*)
231, 22eqsstri 3124 1 < ⊆ (ℝ* × ℝ*)
 Colors of variables: wff set class Syntax hints:   ∧ wa 103   ∧ w3a 962   ∈ wcel 1480   ∪ cun 3064   ⊆ wss 3066  {csn 3522  {cpr 3523   class class class wbr 3924  {copab 3983   × cxp 4532  ℝcr 7612   <ℝ cltrr 7617  +∞cpnf 7790  -∞cmnf 7791  ℝ*cxr 7792   < clt 7793 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pr 3529  df-opab 3985  df-xp 4540  df-xr 7797  df-ltxr 7798 This theorem is referenced by:  ltrel  7819
 Copyright terms: Public domain W3C validator