ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltxr GIF version

Theorem ltxr 9449
Description: The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltxr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))

Proof of Theorem ltxr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 3898 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 < 𝑦𝐴 < 𝐵))
2 df-3an 945 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦))
32opabbii 3953 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦)}
41, 3brab2ga 4572 . . . 4 (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵))
54a1i 9 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵)))
6 brun 3939 . . . 4 (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 ↔ (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵))
7 brxp 4528 . . . . . . 7 (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 ↔ (𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}))
8 elun 3181 . . . . . . . . . . 11 (𝐴 ∈ (ℝ ∪ {-∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 ∈ {-∞}))
9 orcom 700 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {-∞}) ↔ (𝐴 ∈ {-∞} ∨ 𝐴 ∈ ℝ))
108, 9bitri 183 . . . . . . . . . 10 (𝐴 ∈ (ℝ ∪ {-∞}) ↔ (𝐴 ∈ {-∞} ∨ 𝐴 ∈ ℝ))
11 elsng 3506 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴 ∈ {-∞} ↔ 𝐴 = -∞))
1211orbi1d 763 . . . . . . . . . 10 (𝐴 ∈ ℝ* → ((𝐴 ∈ {-∞} ∨ 𝐴 ∈ ℝ) ↔ (𝐴 = -∞ ∨ 𝐴 ∈ ℝ)))
1310, 12syl5bb 191 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 ∈ (ℝ ∪ {-∞}) ↔ (𝐴 = -∞ ∨ 𝐴 ∈ ℝ)))
14 elsng 3506 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝐵 ∈ {+∞} ↔ 𝐵 = +∞))
1513, 14bi2anan9 578 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}) ↔ ((𝐴 = -∞ ∨ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞)))
16 andir 791 . . . . . . . 8 (((𝐴 = -∞ ∨ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞)))
1715, 16syl6bb 195 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞))))
187, 17syl5bb 191 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞))))
19 brxp 4528 . . . . . . 7 (𝐴({-∞} × ℝ)𝐵 ↔ (𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ))
2011anbi1d 458 . . . . . . . 8 (𝐴 ∈ ℝ* → ((𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ) ↔ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))
2120adantr 272 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ) ↔ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))
2219, 21syl5bb 191 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴({-∞} × ℝ)𝐵 ↔ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))
2318, 22orbi12d 765 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵) ↔ (((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞)) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))
24 orass 739 . . . . 5 ((((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞)) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))
2523, 24syl6bb 195 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
266, 25syl5bb 191 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
275, 26orbi12d 765 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))))
28 df-ltxr 7723 . . . 4 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
2928breqi 3899 . . 3 (𝐴 < 𝐵𝐴({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))𝐵)
30 brun 3939 . . 3 (𝐴({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))𝐵 ↔ (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
3129, 30bitri 183 . 2 (𝐴 < 𝐵 ↔ (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
32 orass 739 . 2 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
3327, 31, 323bitr4g 222 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 680  w3a 943   = wceq 1312  wcel 1461  cun 3033  {csn 3491   class class class wbr 3893  {copab 3946   × cxp 4495  cr 7540   < cltrr 7545  +∞cpnf 7715  -∞cmnf 7716  *cxr 7717   < clt 7718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-xp 4503  df-ltxr 7723
This theorem is referenced by:  xrltnr  9453  ltpnf  9454  mnflt  9456  mnfltpnf  9458  pnfnlt  9460  nltmnf  9461
  Copyright terms: Public domain W3C validator