ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltxr GIF version

Theorem ltxr 9181
Description: The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltxr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))

Proof of Theorem ltxr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 3827 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 < 𝑦𝐴 < 𝐵))
2 df-3an 924 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦))
32opabbii 3882 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦)}
41, 3brab2ga 4483 . . . 4 (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵))
54a1i 9 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵)))
6 brun 3868 . . . 4 (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 ↔ (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵))
7 brxp 4443 . . . . . . 7 (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 ↔ (𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}))
8 elun 3130 . . . . . . . . . . 11 (𝐴 ∈ (ℝ ∪ {-∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 ∈ {-∞}))
9 orcom 680 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {-∞}) ↔ (𝐴 ∈ {-∞} ∨ 𝐴 ∈ ℝ))
108, 9bitri 182 . . . . . . . . . 10 (𝐴 ∈ (ℝ ∪ {-∞}) ↔ (𝐴 ∈ {-∞} ∨ 𝐴 ∈ ℝ))
11 elsng 3446 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴 ∈ {-∞} ↔ 𝐴 = -∞))
1211orbi1d 738 . . . . . . . . . 10 (𝐴 ∈ ℝ* → ((𝐴 ∈ {-∞} ∨ 𝐴 ∈ ℝ) ↔ (𝐴 = -∞ ∨ 𝐴 ∈ ℝ)))
1310, 12syl5bb 190 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 ∈ (ℝ ∪ {-∞}) ↔ (𝐴 = -∞ ∨ 𝐴 ∈ ℝ)))
14 elsng 3446 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝐵 ∈ {+∞} ↔ 𝐵 = +∞))
1513, 14bi2anan9 571 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}) ↔ ((𝐴 = -∞ ∨ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞)))
16 andir 766 . . . . . . . 8 (((𝐴 = -∞ ∨ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞)))
1715, 16syl6bb 194 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞))))
187, 17syl5bb 190 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞))))
19 brxp 4443 . . . . . . 7 (𝐴({-∞} × ℝ)𝐵 ↔ (𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ))
2011anbi1d 453 . . . . . . . 8 (𝐴 ∈ ℝ* → ((𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ) ↔ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))
2120adantr 270 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ) ↔ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))
2219, 21syl5bb 190 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴({-∞} × ℝ)𝐵 ↔ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))
2318, 22orbi12d 740 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵) ↔ (((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞)) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))
24 orass 717 . . . . 5 ((((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞)) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))
2523, 24syl6bb 194 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
266, 25syl5bb 190 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
275, 26orbi12d 740 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))))
28 df-ltxr 7474 . . . 4 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
2928breqi 3828 . . 3 (𝐴 < 𝐵𝐴({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))𝐵)
30 brun 3868 . . 3 (𝐴({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))𝐵 ↔ (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
3129, 30bitri 182 . 2 (𝐴 < 𝐵 ↔ (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
32 orass 717 . 2 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
3327, 31, 323bitr4g 221 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 662  w3a 922   = wceq 1287  wcel 1436  cun 2986  {csn 3431   class class class wbr 3822  {copab 3875   × cxp 4411  cr 7296   < cltrr 7301  +∞cpnf 7466  -∞cmnf 7467  *cxr 7468   < clt 7469
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-br 3823  df-opab 3877  df-xp 4419  df-ltxr 7474
This theorem is referenced by:  xrltnr  9185  ltpnf  9186  mnflt  9188  mnfltpnf  9190  pnfnlt  9192  nltmnf  9193
  Copyright terms: Public domain W3C validator