ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltxrlt GIF version

Theorem ltxrlt 8085
Description: The standard less-than < and the extended real less-than < are identical when restricted to the non-extended reals . (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltxrlt ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))

Proof of Theorem ltxrlt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltxr 8059 . . . . 5 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
21breqi 4035 . . . 4 (𝐴 < 𝐵𝐴({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))𝐵)
3 brun 4080 . . . 4 (𝐴({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))𝐵 ↔ (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
42, 3bitri 184 . . 3 (𝐴 < 𝐵 ↔ (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
5 eleq1 2256 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ∈ ℝ ↔ 𝐴 ∈ ℝ))
6 breq1 4032 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 < 𝑦𝐴 < 𝑦))
75, 63anbi13d 1325 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ↔ (𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐴 < 𝑦)))
8 eleq1 2256 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 ∈ ℝ ↔ 𝐵 ∈ ℝ))
9 breq2 4033 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 < 𝑦𝐴 < 𝐵))
108, 93anbi23d 1326 . . . . . 6 (𝑦 = 𝐵 → ((𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐴 < 𝑦) ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))
11 eqid 2193 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}
127, 10, 11brabg 4299 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))
13 simp3 1001 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
1412, 13biimtrdi 163 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴 < 𝐵))
15 brun 4080 . . . . 5 (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 ↔ (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵))
16 brxp 4690 . . . . . . . . . . 11 (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 ↔ (𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}))
1716simprbi 275 . . . . . . . . . 10 (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐵 ∈ {+∞})
18 elsni 3636 . . . . . . . . . 10 (𝐵 ∈ {+∞} → 𝐵 = +∞)
1917, 18syl 14 . . . . . . . . 9 (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐵 = +∞)
2019a1i 9 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐵 = +∞))
21 renepnf 8067 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
2221neneqd 2385 . . . . . . . 8 (𝐵 ∈ ℝ → ¬ 𝐵 = +∞)
23 pm2.24 622 . . . . . . . 8 (𝐵 = +∞ → (¬ 𝐵 = +∞ → 𝐴 < 𝐵))
2420, 22, 23syl6ci 1456 . . . . . . 7 (𝐵 ∈ ℝ → (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴 < 𝐵))
2524adantl 277 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴 < 𝐵))
26 brxp 4690 . . . . . . . . . . 11 (𝐴({-∞} × ℝ)𝐵 ↔ (𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ))
2726simplbi 274 . . . . . . . . . 10 (𝐴({-∞} × ℝ)𝐵𝐴 ∈ {-∞})
28 elsni 3636 . . . . . . . . . 10 (𝐴 ∈ {-∞} → 𝐴 = -∞)
2927, 28syl 14 . . . . . . . . 9 (𝐴({-∞} × ℝ)𝐵𝐴 = -∞)
3029a1i 9 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴({-∞} × ℝ)𝐵𝐴 = -∞))
31 renemnf 8068 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
3231neneqd 2385 . . . . . . . 8 (𝐴 ∈ ℝ → ¬ 𝐴 = -∞)
33 pm2.24 622 . . . . . . . 8 (𝐴 = -∞ → (¬ 𝐴 = -∞ → 𝐴 < 𝐵))
3430, 32, 33syl6ci 1456 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴({-∞} × ℝ)𝐵𝐴 < 𝐵))
3534adantr 276 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴({-∞} × ℝ)𝐵𝐴 < 𝐵))
3625, 35jaod 718 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵) → 𝐴 < 𝐵))
3715, 36biimtrid 152 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵𝐴 < 𝐵))
3814, 37jaod 718 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵) → 𝐴 < 𝐵))
394, 38biimtrid 152 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
40123adant3 1019 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))
4140ibir 177 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵)
4241orcd 734 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
4342, 4sylibr 134 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
44433expia 1207 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
4539, 44impbid 129 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2164  cun 3151  {csn 3618   class class class wbr 4029  {copab 4089   × cxp 4657  cr 7871   < cltrr 7876  +∞cpnf 8051  -∞cmnf 8052   < clt 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-pnf 8056  df-mnf 8057  df-ltxr 8059
This theorem is referenced by:  axltirr  8086  axltwlin  8087  axlttrn  8088  axltadd  8089  axapti  8090  axmulgt0  8091  axsuploc  8092  0lt1  8146  recexre  8597  recexgt0  8599  remulext1  8618  arch  9237  caucvgrelemcau  11124  caucvgre  11125
  Copyright terms: Public domain W3C validator