ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltxrlt GIF version

Theorem ltxrlt 7985
Description: The standard less-than < and the extended real less-than < are identical when restricted to the non-extended reals . (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltxrlt ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))

Proof of Theorem ltxrlt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltxr 7959 . . . . 5 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
21breqi 3995 . . . 4 (𝐴 < 𝐵𝐴({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))𝐵)
3 brun 4040 . . . 4 (𝐴({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))𝐵 ↔ (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
42, 3bitri 183 . . 3 (𝐴 < 𝐵 ↔ (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
5 eleq1 2233 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ∈ ℝ ↔ 𝐴 ∈ ℝ))
6 breq1 3992 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 < 𝑦𝐴 < 𝑦))
75, 63anbi13d 1309 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ↔ (𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐴 < 𝑦)))
8 eleq1 2233 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 ∈ ℝ ↔ 𝐵 ∈ ℝ))
9 breq2 3993 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 < 𝑦𝐴 < 𝐵))
108, 93anbi23d 1310 . . . . . 6 (𝑦 = 𝐵 → ((𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐴 < 𝑦) ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))
11 eqid 2170 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}
127, 10, 11brabg 4254 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))
13 simp3 994 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
1412, 13syl6bi 162 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴 < 𝐵))
15 brun 4040 . . . . 5 (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 ↔ (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵))
16 brxp 4642 . . . . . . . . . . 11 (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 ↔ (𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}))
1716simprbi 273 . . . . . . . . . 10 (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐵 ∈ {+∞})
18 elsni 3601 . . . . . . . . . 10 (𝐵 ∈ {+∞} → 𝐵 = +∞)
1917, 18syl 14 . . . . . . . . 9 (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐵 = +∞)
2019a1i 9 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐵 = +∞))
21 renepnf 7967 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
2221neneqd 2361 . . . . . . . 8 (𝐵 ∈ ℝ → ¬ 𝐵 = +∞)
23 pm2.24 616 . . . . . . . 8 (𝐵 = +∞ → (¬ 𝐵 = +∞ → 𝐴 < 𝐵))
2420, 22, 23syl6ci 1438 . . . . . . 7 (𝐵 ∈ ℝ → (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴 < 𝐵))
2524adantl 275 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴 < 𝐵))
26 brxp 4642 . . . . . . . . . . 11 (𝐴({-∞} × ℝ)𝐵 ↔ (𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ))
2726simplbi 272 . . . . . . . . . 10 (𝐴({-∞} × ℝ)𝐵𝐴 ∈ {-∞})
28 elsni 3601 . . . . . . . . . 10 (𝐴 ∈ {-∞} → 𝐴 = -∞)
2927, 28syl 14 . . . . . . . . 9 (𝐴({-∞} × ℝ)𝐵𝐴 = -∞)
3029a1i 9 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴({-∞} × ℝ)𝐵𝐴 = -∞))
31 renemnf 7968 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
3231neneqd 2361 . . . . . . . 8 (𝐴 ∈ ℝ → ¬ 𝐴 = -∞)
33 pm2.24 616 . . . . . . . 8 (𝐴 = -∞ → (¬ 𝐴 = -∞ → 𝐴 < 𝐵))
3430, 32, 33syl6ci 1438 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴({-∞} × ℝ)𝐵𝐴 < 𝐵))
3534adantr 274 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴({-∞} × ℝ)𝐵𝐴 < 𝐵))
3625, 35jaod 712 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵) → 𝐴 < 𝐵))
3715, 36syl5bi 151 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵𝐴 < 𝐵))
3814, 37jaod 712 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵) → 𝐴 < 𝐵))
394, 38syl5bi 151 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
40123adant3 1012 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))
4140ibir 176 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵)
4241orcd 728 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
4342, 4sylibr 133 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
44433expia 1200 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
4539, 44impbid 128 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  cun 3119  {csn 3583   class class class wbr 3989  {copab 4049   × cxp 4609  cr 7773   < cltrr 7778  +∞cpnf 7951  -∞cmnf 7952   < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-pnf 7956  df-mnf 7957  df-ltxr 7959
This theorem is referenced by:  axltirr  7986  axltwlin  7987  axlttrn  7988  axltadd  7989  axapti  7990  axmulgt0  7991  axsuploc  7992  0lt1  8046  recexre  8497  recexgt0  8499  remulext1  8518  arch  9132  caucvgrelemcau  10944  caucvgre  10945
  Copyright terms: Public domain W3C validator