ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismkv GIF version

Theorem ismkv 7219
Description: The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.)
Assertion
Ref Expression
ismkv (𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
Distinct variable group:   𝐴,𝑓,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑓)

Proof of Theorem ismkv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 feq2 5391 . . . 4 (𝑦 = 𝐴 → (𝑓:𝑦⟶2o𝑓:𝐴⟶2o))
2 raleq 2693 . . . . . 6 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝑓𝑥) = 1o ↔ ∀𝑥𝐴 (𝑓𝑥) = 1o))
32notbid 668 . . . . 5 (𝑦 = 𝐴 → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o ↔ ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o))
4 rexeq 2694 . . . . 5 (𝑦 = 𝐴 → (∃𝑥𝑦 (𝑓𝑥) = ∅ ↔ ∃𝑥𝐴 (𝑓𝑥) = ∅))
53, 4imbi12d 234 . . . 4 (𝑦 = 𝐴 → ((¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅) ↔ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
61, 5imbi12d 234 . . 3 (𝑦 = 𝐴 → ((𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅)) ↔ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
76albidv 1838 . 2 (𝑦 = 𝐴 → (∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅)) ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
8 df-markov 7218 . 2 Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
97, 8elab2g 2911 1 (𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wal 1362   = wceq 1364  wcel 2167  wral 2475  wrex 2476  c0 3450  wf 5254  cfv 5258  1oc1o 6467  2oc2o 6468  Markovcmarkov 7217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-fn 5261  df-f 5262  df-markov 7218
This theorem is referenced by:  ismkvmap  7220  omnimkv  7222  mkvprop  7224  omniwomnimkv  7233
  Copyright terms: Public domain W3C validator