Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ismkv | GIF version |
Description: The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.) |
Ref | Expression |
---|---|
ismkv | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 5331 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑓:𝑦⟶2o ↔ 𝑓:𝐴⟶2o)) | |
2 | raleq 2665 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | |
3 | 2 | notbid 662 | . . . . 5 ⊢ (𝑦 = 𝐴 → (¬ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o ↔ ¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
4 | rexeq 2666 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) | |
5 | 3, 4 | imbi12d 233 | . . . 4 ⊢ (𝑦 = 𝐴 → ((¬ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅) ↔ (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) |
6 | 1, 5 | imbi12d 233 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑓:𝑦⟶2o → (¬ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅)) ↔ (𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
7 | 6 | albidv 1817 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅)) ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
8 | df-markov 7128 | . 2 ⊢ Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅))} | |
9 | 7, 8 | elab2g 2877 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∀wal 1346 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ∅c0 3414 ⟶wf 5194 ‘cfv 5198 1oc1o 6388 2oc2o 6389 Markovcmarkov 7127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-fn 5201 df-f 5202 df-markov 7128 |
This theorem is referenced by: ismkvmap 7130 omnimkv 7132 mkvprop 7134 omniwomnimkv 7143 |
Copyright terms: Public domain | W3C validator |