ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismkv GIF version

Theorem ismkv 7153
Description: The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.)
Assertion
Ref Expression
ismkv (𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
Distinct variable group:   𝐴,𝑓,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑓)

Proof of Theorem ismkv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 feq2 5351 . . . 4 (𝑦 = 𝐴 → (𝑓:𝑦⟶2o𝑓:𝐴⟶2o))
2 raleq 2673 . . . . . 6 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝑓𝑥) = 1o ↔ ∀𝑥𝐴 (𝑓𝑥) = 1o))
32notbid 667 . . . . 5 (𝑦 = 𝐴 → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o ↔ ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o))
4 rexeq 2674 . . . . 5 (𝑦 = 𝐴 → (∃𝑥𝑦 (𝑓𝑥) = ∅ ↔ ∃𝑥𝐴 (𝑓𝑥) = ∅))
53, 4imbi12d 234 . . . 4 (𝑦 = 𝐴 → ((¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅) ↔ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
61, 5imbi12d 234 . . 3 (𝑦 = 𝐴 → ((𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅)) ↔ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
76albidv 1824 . 2 (𝑦 = 𝐴 → (∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅)) ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
8 df-markov 7152 . 2 Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
97, 8elab2g 2886 1 (𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wal 1351   = wceq 1353  wcel 2148  wral 2455  wrex 2456  c0 3424  wf 5214  cfv 5218  1oc1o 6412  2oc2o 6413  Markovcmarkov 7151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-fn 5221  df-f 5222  df-markov 7152
This theorem is referenced by:  ismkvmap  7154  omnimkv  7156  mkvprop  7158  omniwomnimkv  7167
  Copyright terms: Public domain W3C validator