Detailed syntax breakdown of Definition df-met
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cmet 14093 | 
. 2
class
Met | 
| 2 |   | vx | 
. . 3
setvar 𝑥 | 
| 3 |   | cvv 2763 | 
. . 3
class
V | 
| 4 |   | vy | 
. . . . . . . . . . 11
setvar 𝑦 | 
| 5 | 4 | cv 1363 | 
. . . . . . . . . 10
class 𝑦 | 
| 6 |   | vz | 
. . . . . . . . . . 11
setvar 𝑧 | 
| 7 | 6 | cv 1363 | 
. . . . . . . . . 10
class 𝑧 | 
| 8 |   | vd | 
. . . . . . . . . . 11
setvar 𝑑 | 
| 9 | 8 | cv 1363 | 
. . . . . . . . . 10
class 𝑑 | 
| 10 | 5, 7, 9 | co 5922 | 
. . . . . . . . 9
class (𝑦𝑑𝑧) | 
| 11 |   | cc0 7879 | 
. . . . . . . . 9
class
0 | 
| 12 | 10, 11 | wceq 1364 | 
. . . . . . . 8
wff (𝑦𝑑𝑧) = 0 | 
| 13 | 4, 6 | weq 1517 | 
. . . . . . . 8
wff 𝑦 = 𝑧 | 
| 14 | 12, 13 | wb 105 | 
. . . . . . 7
wff ((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) | 
| 15 |   | vw | 
. . . . . . . . . . . 12
setvar 𝑤 | 
| 16 | 15 | cv 1363 | 
. . . . . . . . . . 11
class 𝑤 | 
| 17 | 16, 5, 9 | co 5922 | 
. . . . . . . . . 10
class (𝑤𝑑𝑦) | 
| 18 | 16, 7, 9 | co 5922 | 
. . . . . . . . . 10
class (𝑤𝑑𝑧) | 
| 19 |   | caddc 7882 | 
. . . . . . . . . 10
class 
+ | 
| 20 | 17, 18, 19 | co 5922 | 
. . . . . . . . 9
class ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)) | 
| 21 |   | cle 8062 | 
. . . . . . . . 9
class 
≤ | 
| 22 | 10, 20, 21 | wbr 4033 | 
. . . . . . . 8
wff (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)) | 
| 23 | 2 | cv 1363 | 
. . . . . . . 8
class 𝑥 | 
| 24 | 22, 15, 23 | wral 2475 | 
. . . . . . 7
wff
∀𝑤 ∈
𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)) | 
| 25 | 14, 24 | wa 104 | 
. . . . . 6
wff (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧))) | 
| 26 | 25, 6, 23 | wral 2475 | 
. . . . 5
wff
∀𝑧 ∈
𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧))) | 
| 27 | 26, 4, 23 | wral 2475 | 
. . . 4
wff
∀𝑦 ∈
𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧))) | 
| 28 |   | cr 7878 | 
. . . . 5
class
ℝ | 
| 29 | 23, 23 | cxp 4661 | 
. . . . 5
class (𝑥 × 𝑥) | 
| 30 |   | cmap 6707 | 
. . . . 5
class 
↑𝑚 | 
| 31 | 28, 29, 30 | co 5922 | 
. . . 4
class (ℝ
↑𝑚 (𝑥 × 𝑥)) | 
| 32 | 27, 8, 31 | crab 2479 | 
. . 3
class {𝑑 ∈ (ℝ
↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))} | 
| 33 | 2, 3, 32 | cmpt 4094 | 
. 2
class (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ
↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))}) | 
| 34 | 1, 33 | wceq 1364 | 
1
wff Met =
(𝑥 ∈ V ↦ {𝑑 ∈ (ℝ
↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))}) |