Step | Hyp | Ref
| Expression |
1 | | elex 2737 |
. . . . 5
⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ V) |
2 | | fnmap 6621 |
. . . . . . . 8
⊢
↑𝑚 Fn (V × V) |
3 | | reex 7887 |
. . . . . . . 8
⊢ ℝ
∈ V |
4 | | sqxpexg 4720 |
. . . . . . . 8
⊢ (𝑋 ∈ V → (𝑋 × 𝑋) ∈ V) |
5 | | fnovex 5875 |
. . . . . . . 8
⊢ ((
↑𝑚 Fn (V × V) ∧ ℝ ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (ℝ
↑𝑚 (𝑋 × 𝑋)) ∈ V) |
6 | 2, 3, 4, 5 | mp3an12i 1331 |
. . . . . . 7
⊢ (𝑋 ∈ V → (ℝ
↑𝑚 (𝑋 × 𝑋)) ∈ V) |
7 | | rabexg 4125 |
. . . . . . 7
⊢ ((ℝ
↑𝑚 (𝑋 × 𝑋)) ∈ V → {𝑑 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} ∈ V) |
8 | 6, 7 | syl 14 |
. . . . . 6
⊢ (𝑋 ∈ V → {𝑑 ∈ (ℝ
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} ∈ V) |
9 | | xpeq12 4623 |
. . . . . . . . . 10
⊢ ((𝑡 = 𝑋 ∧ 𝑡 = 𝑋) → (𝑡 × 𝑡) = (𝑋 × 𝑋)) |
10 | 9 | anidms 395 |
. . . . . . . . 9
⊢ (𝑡 = 𝑋 → (𝑡 × 𝑡) = (𝑋 × 𝑋)) |
11 | 10 | oveq2d 5858 |
. . . . . . . 8
⊢ (𝑡 = 𝑋 → (ℝ ↑𝑚
(𝑡 × 𝑡)) = (ℝ
↑𝑚 (𝑋 × 𝑋))) |
12 | | raleq 2661 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑋 → (∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) ↔ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))) |
13 | 12 | anbi2d 460 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑋 → ((((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))))) |
14 | 13 | raleqbi1dv 2669 |
. . . . . . . . 9
⊢ (𝑡 = 𝑋 → (∀𝑦 ∈ 𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))))) |
15 | 14 | raleqbi1dv 2669 |
. . . . . . . 8
⊢ (𝑡 = 𝑋 → (∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))))) |
16 | 11, 15 | rabeqbidv 2721 |
. . . . . . 7
⊢ (𝑡 = 𝑋 → {𝑑 ∈ (ℝ ↑𝑚
(𝑡 × 𝑡)) ∣ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} = {𝑑 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}) |
17 | | df-met 12629 |
. . . . . . 7
⊢ Met =
(𝑡 ∈ V ↦ {𝑑 ∈ (ℝ
↑𝑚 (𝑡 × 𝑡)) ∣ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}) |
18 | 16, 17 | fvmptg 5562 |
. . . . . 6
⊢ ((𝑋 ∈ V ∧ {𝑑 ∈ (ℝ
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} ∈ V) → (Met‘𝑋) = {𝑑 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}) |
19 | 8, 18 | mpdan 418 |
. . . . 5
⊢ (𝑋 ∈ V →
(Met‘𝑋) = {𝑑 ∈ (ℝ
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}) |
20 | 1, 19 | syl 14 |
. . . 4
⊢ (𝑋 ∈ 𝐴 → (Met‘𝑋) = {𝑑 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}) |
21 | 20 | eleq2d 2236 |
. . 3
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})) |
22 | | oveq 5848 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (𝑥𝑑𝑦) = (𝑥𝐷𝑦)) |
23 | 22 | eqeq1d 2174 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → ((𝑥𝑑𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0)) |
24 | 23 | bibi1d 232 |
. . . . . 6
⊢ (𝑑 = 𝐷 → (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))) |
25 | | oveq 5848 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑧𝑑𝑥) = (𝑧𝐷𝑥)) |
26 | | oveq 5848 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑧𝑑𝑦) = (𝑧𝐷𝑦)) |
27 | 25, 26 | oveq12d 5860 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
28 | 22, 27 | breq12d 3995 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → ((𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) |
29 | 28 | ralbidv 2466 |
. . . . . 6
⊢ (𝑑 = 𝐷 → (∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) ↔ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) |
30 | 24, 29 | anbi12d 465 |
. . . . 5
⊢ (𝑑 = 𝐷 → ((((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) |
31 | 30 | 2ralbidv 2490 |
. . . 4
⊢ (𝑑 = 𝐷 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) |
32 | 31 | elrab 2882 |
. . 3
⊢ (𝐷 ∈ {𝑑 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} ↔ (𝐷 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) |
33 | 21, 32 | bitrdi 195 |
. 2
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))) |
34 | | sqxpexg 4720 |
. . . 4
⊢ (𝑋 ∈ 𝐴 → (𝑋 × 𝑋) ∈ V) |
35 | | elmapg 6627 |
. . . 4
⊢ ((ℝ
∈ V ∧ (𝑋 ×
𝑋) ∈ V) → (𝐷 ∈ (ℝ
↑𝑚 (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ)) |
36 | 3, 34, 35 | sylancr 411 |
. . 3
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ)) |
37 | 36 | anbi1d 461 |
. 2
⊢ (𝑋 ∈ 𝐴 → ((𝐷 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))) |
38 | 33, 37 | bitrd 187 |
1
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))) |