| Step | Hyp | Ref
 | Expression | 
| 1 |   | elex 2774 | 
. . . . 5
⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ V) | 
| 2 |   | fnmap 6714 | 
. . . . . . . 8
⊢ 
↑𝑚 Fn (V × V) | 
| 3 |   | reex 8013 | 
. . . . . . . 8
⊢ ℝ
∈ V | 
| 4 |   | sqxpexg 4779 | 
. . . . . . . 8
⊢ (𝑋 ∈ V → (𝑋 × 𝑋) ∈ V) | 
| 5 |   | fnovex 5955 | 
. . . . . . . 8
⊢ ((
↑𝑚 Fn (V × V) ∧ ℝ ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (ℝ
↑𝑚 (𝑋 × 𝑋)) ∈ V) | 
| 6 | 2, 3, 4, 5 | mp3an12i 1352 | 
. . . . . . 7
⊢ (𝑋 ∈ V → (ℝ
↑𝑚 (𝑋 × 𝑋)) ∈ V) | 
| 7 |   | rabexg 4176 | 
. . . . . . 7
⊢ ((ℝ
↑𝑚 (𝑋 × 𝑋)) ∈ V → {𝑑 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} ∈ V) | 
| 8 | 6, 7 | syl 14 | 
. . . . . 6
⊢ (𝑋 ∈ V → {𝑑 ∈ (ℝ
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} ∈ V) | 
| 9 |   | xpeq12 4682 | 
. . . . . . . . . 10
⊢ ((𝑡 = 𝑋 ∧ 𝑡 = 𝑋) → (𝑡 × 𝑡) = (𝑋 × 𝑋)) | 
| 10 | 9 | anidms 397 | 
. . . . . . . . 9
⊢ (𝑡 = 𝑋 → (𝑡 × 𝑡) = (𝑋 × 𝑋)) | 
| 11 | 10 | oveq2d 5938 | 
. . . . . . . 8
⊢ (𝑡 = 𝑋 → (ℝ ↑𝑚
(𝑡 × 𝑡)) = (ℝ
↑𝑚 (𝑋 × 𝑋))) | 
| 12 |   | raleq 2693 | 
. . . . . . . . . . 11
⊢ (𝑡 = 𝑋 → (∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) ↔ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))) | 
| 13 | 12 | anbi2d 464 | 
. . . . . . . . . 10
⊢ (𝑡 = 𝑋 → ((((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))))) | 
| 14 | 13 | raleqbi1dv 2705 | 
. . . . . . . . 9
⊢ (𝑡 = 𝑋 → (∀𝑦 ∈ 𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))))) | 
| 15 | 14 | raleqbi1dv 2705 | 
. . . . . . . 8
⊢ (𝑡 = 𝑋 → (∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))))) | 
| 16 | 11, 15 | rabeqbidv 2758 | 
. . . . . . 7
⊢ (𝑡 = 𝑋 → {𝑑 ∈ (ℝ ↑𝑚
(𝑡 × 𝑡)) ∣ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} = {𝑑 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}) | 
| 17 |   | df-met 14101 | 
. . . . . . 7
⊢ Met =
(𝑡 ∈ V ↦ {𝑑 ∈ (ℝ
↑𝑚 (𝑡 × 𝑡)) ∣ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}) | 
| 18 | 16, 17 | fvmptg 5637 | 
. . . . . 6
⊢ ((𝑋 ∈ V ∧ {𝑑 ∈ (ℝ
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} ∈ V) → (Met‘𝑋) = {𝑑 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}) | 
| 19 | 8, 18 | mpdan 421 | 
. . . . 5
⊢ (𝑋 ∈ V →
(Met‘𝑋) = {𝑑 ∈ (ℝ
↑𝑚 (𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}) | 
| 20 | 1, 19 | syl 14 | 
. . . 4
⊢ (𝑋 ∈ 𝐴 → (Met‘𝑋) = {𝑑 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}) | 
| 21 | 20 | eleq2d 2266 | 
. . 3
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})) | 
| 22 |   | oveq 5928 | 
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (𝑥𝑑𝑦) = (𝑥𝐷𝑦)) | 
| 23 | 22 | eqeq1d 2205 | 
. . . . . . 7
⊢ (𝑑 = 𝐷 → ((𝑥𝑑𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0)) | 
| 24 | 23 | bibi1d 233 | 
. . . . . 6
⊢ (𝑑 = 𝐷 → (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))) | 
| 25 |   | oveq 5928 | 
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑧𝑑𝑥) = (𝑧𝐷𝑥)) | 
| 26 |   | oveq 5928 | 
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝑧𝑑𝑦) = (𝑧𝐷𝑦)) | 
| 27 | 25, 26 | oveq12d 5940 | 
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) | 
| 28 | 22, 27 | breq12d 4046 | 
. . . . . . 7
⊢ (𝑑 = 𝐷 → ((𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) | 
| 29 | 28 | ralbidv 2497 | 
. . . . . 6
⊢ (𝑑 = 𝐷 → (∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) ↔ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) | 
| 30 | 24, 29 | anbi12d 473 | 
. . . . 5
⊢ (𝑑 = 𝐷 → ((((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) | 
| 31 | 30 | 2ralbidv 2521 | 
. . . 4
⊢ (𝑑 = 𝐷 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) | 
| 32 | 31 | elrab 2920 | 
. . 3
⊢ (𝐷 ∈ {𝑑 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} ↔ (𝐷 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) | 
| 33 | 21, 32 | bitrdi 196 | 
. 2
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))) | 
| 34 |   | sqxpexg 4779 | 
. . . 4
⊢ (𝑋 ∈ 𝐴 → (𝑋 × 𝑋) ∈ V) | 
| 35 |   | elmapg 6720 | 
. . . 4
⊢ ((ℝ
∈ V ∧ (𝑋 ×
𝑋) ∈ V) → (𝐷 ∈ (ℝ
↑𝑚 (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | 
| 36 | 3, 34, 35 | sylancr 414 | 
. . 3
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | 
| 37 | 36 | anbi1d 465 | 
. 2
⊢ (𝑋 ∈ 𝐴 → ((𝐷 ∈ (ℝ ↑𝑚
(𝑋 × 𝑋)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))) | 
| 38 | 33, 37 | bitrd 188 | 
1
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))) |