HomeHome Intuitionistic Logic Explorer
Theorem List (p. 146 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14501-14600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmopnset 14501 Getting a set by applying MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.)
(𝐷𝑉 → (MetOpen‘𝐷) ∈ V)
 
Theoremcndsex 14502 The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
(abs ∘ − ) ∈ V
 
Theoremcntopex 14503 The standard topology on the complex numbers is a set. (Contributed by Jim Kingdon, 25-Sep-2025.)
(MetOpen‘(abs ∘ − )) ∈ V
 
Theoremmetuex 14504 Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
(𝐴𝑉 → (metUnif‘𝐴) ∈ V)
 
Syntaxccnfld 14505 Extend class notation with the field of complex numbers.
class fld
 
Definitiondf-cnfld 14506* The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator.

The contract of this set is defined entirely by cnfldex 14508, cnfldadd 14511, cnfldmul 14513, cnfldcj 14514, cnfldtset 14515, cnfldle 14516, cnfldds 14517, and cnfldbas 14509. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
 
Theoremcnfldstr 14507 The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
fld Struct ⟨1, 13⟩
 
Theoremcnfldex 14508 The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
fld ∈ V
 
Theoremcnfldbas 14509 The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
ℂ = (Base‘ℂfld)
 
Theoremmpocnfldadd 14510* The addition operation of the field of complex numbers. Version of cnfldadd 14511 using maps-to notation, which does not require ax-addf 8109. (Contributed by GG, 31-Mar-2025.)
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (+g‘ℂfld)
 
Theoremcnfldadd 14511 The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 27-Apr-2025.)
+ = (+g‘ℂfld)
 
Theoremmpocnfldmul 14512* The multiplication operation of the field of complex numbers. Version of cnfldmul 14513 using maps-to notation, which does not require ax-mulf 8110. (Contributed by GG, 31-Mar-2025.)
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (.r‘ℂfld)
 
Theoremcnfldmul 14513 The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 27-Apr-2025.)
· = (.r‘ℂfld)
 
Theoremcnfldcj 14514 The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.)
∗ = (*𝑟‘ℂfld)
 
Theoremcnfldtset 14515 The topology component of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 31-Mar-2025.)
(MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld)
 
Theoremcnfldle 14516 The ordering of the field of complex numbers. Note that this is not actually an ordering on , but we put it in the structure anyway because restricting to does not affect this component, so that (ℂflds ℝ) is an ordered field even though fld itself is not. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14506. (Revised by GG, 31-Mar-2025.)
≤ = (le‘ℂfld)
 
Theoremcnfldds 14517 The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14506. (Revised by GG, 31-Mar-2025.)
(abs ∘ − ) = (dist‘ℂfld)
 
Theoremcncrng 14518 The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.)
fld ∈ CRing
 
Theoremcnring 14519 The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
fld ∈ Ring
 
Theoremcnfld0 14520 Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
0 = (0g‘ℂfld)
 
Theoremcnfld1 14521 One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
1 = (1r‘ℂfld)
 
Theoremcnfldneg 14522 The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
(𝑋 ∈ ℂ → ((invg‘ℂfld)‘𝑋) = -𝑋)
 
Theoremcnfldplusf 14523 The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015.)
+ = (+𝑓‘ℂfld)
 
Theoremcnfldsub 14524 The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.)
− = (-g‘ℂfld)
 
Theoremcnfldmulg 14525 The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵))
 
Theoremcnfldexp 14526 The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))
 
Theoremcnsubmlem 14527* Lemma for nn0subm 14532 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝑥𝐴𝑥 ∈ ℂ)    &   ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)    &   0 ∈ 𝐴       𝐴 ∈ (SubMnd‘ℂfld)
 
Theoremcnsubglem 14528* Lemma for cnsubrglem 14529 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
(𝑥𝐴𝑥 ∈ ℂ)    &   ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)    &   (𝑥𝐴 → -𝑥𝐴)    &   𝐵𝐴       𝐴 ∈ (SubGrp‘ℂfld)
 
Theoremcnsubrglem 14529* Lemma for zsubrg 14530 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
(𝑥𝐴𝑥 ∈ ℂ)    &   ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)    &   (𝑥𝐴 → -𝑥𝐴)    &   1 ∈ 𝐴    &   ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)       𝐴 ∈ (SubRing‘ℂfld)
 
Theoremzsubrg 14530 The integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
ℤ ∈ (SubRing‘ℂfld)
 
Theoremgzsubrg 14531 The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
ℤ[i] ∈ (SubRing‘ℂfld)
 
Theoremnn0subm 14532 The nonnegative integers form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 18-Jun-2015.)
0 ∈ (SubMnd‘ℂfld)
 
Theoremrege0subm 14533 The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015.)
(0[,)+∞) ∈ (SubMnd‘ℂfld)
 
Theoremzsssubrg 14534 The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
(𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅)
 
Theoremgsumfzfsumlem0 14535* Lemma for gsumfzfsum 14537. The case where the sum is empty. (Contributed by Jim Kingdon, 9-Sep-2025.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑁 < 𝑀)       (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
 
Theoremgsumfzfsumlemm 14536* Lemma for gsumfzfsum 14537. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)       (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
 
Theoremgsumfzfsum 14537* Relate a group sum on fld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)       (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
 
Theoremcnfldui 14538 The invertible complex numbers are exactly those apart from zero. This is recapb 8806 but expressed in terms of fld. (Contributed by Jim Kingdon, 11-Sep-2025.)
{𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld)
 
7.7.2  Ring of integers

According to Wikipedia ("Integer", 25-May-2019, https://en.wikipedia.org/wiki/Integer) "The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property, namely to be an initial object in the category of [unital] rings, characterizes the ring 𝑍." In set.mm, there was no explicit definition for the ring of integers until June 2019, but it was denoted by (ℂflds ℤ), the field of complex numbers restricted to the integers. In zringring 14542 it is shown that this restriction is a ring, and zringbas 14545 shows that its base set is the integers. As of June 2019, there is an abbreviation of this expression as Definition df-zring 14540 of the ring of integers.

Remark: Instead of using the symbol "ZZrng" analogous to fld used for the field of complex numbers, we have chosen the version with an "i" to indicate that the ring of integers is a unital ring, see also Wikipedia ("Rng (algebra)", 9-Jun-2019, https://en.wikipedia.org/wiki/Rng_(algebra) 14540).

 
Syntaxczring 14539 Extend class notation with the (unital) ring of integers.
class ring
 
Definitiondf-zring 14540 The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.)
ring = (ℂflds ℤ)
 
Theoremzringcrng 14541 The ring of integers is a commutative ring. (Contributed by AV, 13-Jun-2019.)
ring ∈ CRing
 
Theoremzringring 14542 The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.)
ring ∈ Ring
 
Theoremzringabl 14543 The ring of integers is an (additive) abelian group. (Contributed by AV, 13-Jun-2019.)
ring ∈ Abel
 
Theoremzringgrp 14544 The ring of integers is an (additive) group. (Contributed by AV, 10-Jun-2019.)
ring ∈ Grp
 
Theoremzringbas 14545 The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
ℤ = (Base‘ℤring)
 
Theoremzringplusg 14546 The addition operation of the ring of integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 9-Jun-2019.)
+ = (+g‘ℤring)
 
Theoremzringmulg 14547 The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴(.g‘ℤring)𝐵) = (𝐴 · 𝐵))
 
Theoremzringmulr 14548 The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
· = (.r‘ℤring)
 
Theoremzring0 14549 The zero element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
0 = (0g‘ℤring)
 
Theoremzring1 14550 The unity element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
1 = (1r‘ℤring)
 
Theoremzringnzr 14551 The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.)
ring ∈ NzRing
 
Theoremdvdsrzring 14552 Ring divisibility in the ring of integers corresponds to ordinary divisibility in . (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
∥ = (∥r‘ℤring)
 
Theoremzringinvg 14553 The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
(𝐴 ∈ ℤ → -𝐴 = ((invg‘ℤring)‘𝐴))
 
Theoremzringsubgval 14554 Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.)
= (-g‘ℤring)       ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋𝑌) = (𝑋 𝑌))
 
Theoremzringmpg 14555 The multiplicative group of the ring of integers is the restriction of the multiplicative group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.)
((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
 
Theoremexpghmap 14556* Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
𝑀 = (mulGrp‘ℂfld)    &   𝑈 = (𝑀s {𝑧 ∈ ℂ ∣ 𝑧 # 0})       ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈))
 
Theoremmulgghm2 14557* The powers of a group element give a homomorphism from to a group. The name 1 should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
· = (.g𝑅)    &   𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ Grp ∧ 1𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅))
 
Theoremmulgrhm 14558* The powers of the element 1 give a ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
· = (.g𝑅)    &   𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))    &    1 = (1r𝑅)       (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
 
Theoremmulgrhm2 14559* The powers of the element 1 give the unique ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
· = (.g𝑅)    &   𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))    &    1 = (1r𝑅)       (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹})
 
7.7.3  Algebraic constructions based on the complex numbers
 
Syntaxczrh 14560 Map the rationals into a field, or the integers into a ring.
class ℤRHom
 
Syntaxczlm 14561 Augment an abelian group with vector space operations to turn it into a -module.
class ℤMod
 
Syntaxczn 14562 The ring of integers modulo 𝑛.
class ℤ/n
 
Definitiondf-zrh 14563 Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 𝑛 = 1r + 1r + ... + 1r for integers (see also df-mulg 13643). (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
ℤRHom = (𝑟 ∈ V ↦ (ℤring RingHom 𝑟))
 
Definitiondf-zlm 14564 Augment an abelian group with vector space operations to turn it into a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩))
 
Definitiondf-zn 14565* Define the ring of integers mod 𝑛. This is literally the quotient ring of by the ideal 𝑛, but we augment it with a total order. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
ℤ/nℤ = (𝑛 ∈ ℕ0ring / 𝑧(𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩))
 
Theoremzrhval 14566 Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
𝐿 = (ℤRHom‘𝑅)       𝐿 = (ℤring RingHom 𝑅)
 
Theoremzrhvalg 14567 Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
𝐿 = (ℤRHom‘𝑅)       (𝑅𝑉𝐿 = (ℤring RingHom 𝑅))
 
Theoremzrhval2 14568* Alternate value of the ℤRHom homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝐿 = (ℤRHom‘𝑅)    &    · = (.g𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → 𝐿 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )))
 
Theoremzrhmulg 14569 Value of the ℤRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐿 = (ℤRHom‘𝑅)    &    · = (.g𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿𝑁) = (𝑁 · 1 ))
 
Theoremzrhex 14570 Set existence for ℤRHom. (Contributed by Jim Kingdon, 19-May-2025.)
𝐿 = (ℤRHom‘𝑅)       (𝑅𝑉𝐿 ∈ V)
 
Theoremzrhrhmb 14571 The ℤRHom homomorphism is the unique ring homomorphism from . (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 12-Jun-2019.)
𝐿 = (ℤRHom‘𝑅)       (𝑅 ∈ Ring → (𝐹 ∈ (ℤring RingHom 𝑅) ↔ 𝐹 = 𝐿))
 
Theoremzrhrhm 14572 The ℤRHom homomorphism is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 12-Jun-2019.)
𝐿 = (ℤRHom‘𝑅)       (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
 
Theoremzrh1 14573 Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
𝐿 = (ℤRHom‘𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → (𝐿‘1) = 1 )
 
Theoremzrh0 14574 Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
𝐿 = (ℤRHom‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → (𝐿‘0) = 0 )
 
Theoremzrhpropd 14575* The ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (ℤRHom‘𝐾) = (ℤRHom‘𝐿))
 
Theoremzlmval 14576 Augment an abelian group with vector space operations to turn it into a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
𝑊 = (ℤMod‘𝐺)    &    · = (.g𝐺)       (𝐺𝑉𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
 
Theoremzlmlemg 14577 Lemma for zlmbasg 14578 and zlmplusgg 14579. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
𝑊 = (ℤMod‘𝐺)    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ∈ ℕ    &   (𝐸‘ndx) ≠ (Scalar‘ndx)    &   (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)       (𝐺𝑉 → (𝐸𝐺) = (𝐸𝑊))
 
Theoremzlmbasg 14578 Base set of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
𝑊 = (ℤMod‘𝐺)    &   𝐵 = (Base‘𝐺)       (𝐺𝑉𝐵 = (Base‘𝑊))
 
Theoremzlmplusgg 14579 Group operation of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
𝑊 = (ℤMod‘𝐺)    &    + = (+g𝐺)       (𝐺𝑉+ = (+g𝑊))
 
Theoremzlmmulrg 14580 Ring operation of a -module (if present). (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
𝑊 = (ℤMod‘𝐺)    &    · = (.r𝐺)       (𝐺𝑉· = (.r𝑊))
 
Theoremzlmsca 14581 Scalar ring of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.)
𝑊 = (ℤMod‘𝐺)       (𝐺𝑉 → ℤring = (Scalar‘𝑊))
 
Theoremzlmvscag 14582 Scalar multiplication operation of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑊 = (ℤMod‘𝐺)    &    · = (.g𝐺)       (𝐺𝑉· = ( ·𝑠𝑊))
 
Theoremznlidl 14583 The set 𝑛 is an ideal in . (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)       (𝑁 ∈ ℤ → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring))
 
Theoremzncrng2 14584 Making a commutative ring as a quotient of and 𝑛. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))       (𝑁 ∈ ℤ → 𝑈 ∈ CRing)
 
Theoremznval 14585 The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))    &    = ((𝐹 ∘ ≤ ) ∘ 𝐹)       (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ⟩))
 
Theoremznle 14586 The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))    &    = (le‘𝑌)       (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
 
Theoremznval2 14587 Self-referential expression for the ℤ/n structure. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)    &    = (le‘𝑌)       (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ⟩))
 
Theoremznbaslemnn 14588 Lemma for znbas 14593. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ∈ ℕ    &   (𝐸‘ndx) ≠ (le‘ndx)       (𝑁 ∈ ℕ0 → (𝐸𝑈) = (𝐸𝑌))
 
Theoremznbas2 14589 The base set of ℤ/n is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (Base‘𝑈) = (Base‘𝑌))
 
Theoremznadd 14590 The additive structure of ℤ/n is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (+g𝑈) = (+g𝑌))
 
Theoremznmul 14591 The multiplicative structure of ℤ/n is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (.r𝑈) = (.r𝑌))
 
Theoremznzrh 14592 The ring homomorphism of ℤ/n is inherited from the quotient ring it is based on. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (ℤRHom‘𝑈) = (ℤRHom‘𝑌))
 
Theoremznbas 14593 The base set of ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝑅 = (ℤring ~QG (𝑆‘{𝑁}))       (𝑁 ∈ ℕ0 → (ℤ / 𝑅) = (Base‘𝑌))
 
Theoremzncrng 14594 ℤ/n is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0𝑌 ∈ CRing)
 
Theoremznzrh2 14595* The ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &    = (ℤring ~QG (𝑆‘{𝑁}))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐿 = (ℤRHom‘𝑌)       (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ))
 
Theoremznzrhval 14596 The ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &    = (ℤring ~QG (𝑆‘{𝑁}))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐿 = (ℤRHom‘𝑌)       ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿𝐴) = [𝐴] )
 
Theoremznzrhfo 14597 The ring homomorphism is a surjection onto ℤ/n. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐵 = (Base‘𝑌)    &   𝐿 = (ℤRHom‘𝑌)       (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)
 
Theoremzndvds 14598 Express equality of equivalence classes in ℤ / 𝑛 in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐿 = (ℤRHom‘𝑌)       ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝐵) ↔ 𝑁 ∥ (𝐴𝐵)))
 
Theoremzndvds0 14599 Special case of zndvds 14598 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐿 = (ℤRHom‘𝑌)    &    0 = (0g𝑌)       ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) = 0𝑁𝐴))
 
Theoremznf1o 14600 The function 𝐹 enumerates all equivalence classes in ℤ/n for each 𝑛. When 𝑛 = 0, ℤ / 0ℤ = ℤ / {0} ≈ ℤ so we let 𝑊 = ℤ; otherwise 𝑊 = {0, ..., 𝑛 − 1} enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐵 = (Base‘𝑌)    &   𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))       (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16383
  Copyright terms: Public domain < Previous  Next >