| Intuitionistic Logic Explorer Theorem List (p. 146 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | qusmul2 14501 | Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.) |
| ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑄) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) | ||
| Theorem | crngridl 14502 | In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂)) | ||
| Theorem | crng2idl 14503 | In a commutative ring, a two-sided ideal is the same as a left ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐼 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅)) | ||
| Theorem | qusmulrng 14504 | Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 14505. Similar to qusmul2 14501. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.) |
| ⊢ ∼ = (𝑅 ~QG 𝑆) & ⊢ 𝐻 = (𝑅 /s ∼ ) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝐻) ⇒ ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) | ||
| Theorem | quscrng 14505 | The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.) |
| ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) & ⊢ 𝐼 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑈 ∈ CRing) | ||
| Theorem | rspsn 14506* | Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐾‘{𝐺}) = {𝑥 ∣ 𝐺 ∥ 𝑥}) | ||
| Syntax | cpsmet 14507 | Extend class notation with the class of all pseudometric spaces. |
| class PsMet | ||
| Syntax | cxmet 14508 | Extend class notation with the class of all extended metric spaces. |
| class ∞Met | ||
| Syntax | cmet 14509 | Extend class notation with the class of all metrics. |
| class Met | ||
| Syntax | cbl 14510 | Extend class notation with the metric space ball function. |
| class ball | ||
| Syntax | cfbas 14511 | Extend class definition to include the class of filter bases. |
| class fBas | ||
| Syntax | cfg 14512 | Extend class definition to include the filter generating function. |
| class filGen | ||
| Syntax | cmopn 14513 | Extend class notation with a function mapping each metric space to the family of its open sets. |
| class MetOpen | ||
| Syntax | cmetu 14514 | Extend class notation with the function mapping metrics to the uniform structure generated by that metric. |
| class metUnif | ||
| Definition | df-psmet 14515* | Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | ||
| Definition | df-xmet 14516* | Define the set of all extended metrics on a given base set. The definition is similar to df-met 14517, but we also allow the metric to take on the value +∞. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | ||
| Definition | df-met 14517* | Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric. However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of [Gleason] p. 223. (Contributed by NM, 25-Aug-2006.) |
| ⊢ Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))}) | ||
| Definition | df-bl 14518* | Define the metric space ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧})) | ||
| Definition | df-mopn 14519 | Define a function whose value is the family of open sets of a metric space. (Contributed by NM, 1-Sep-2006.) |
| ⊢ MetOpen = (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) | ||
| Definition | df-fbas 14520* | Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.) |
| ⊢ fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) ≠ ∅)}) | ||
| Definition | df-fg 14521* | Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.) |
| ⊢ filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅}) | ||
| Definition | df-metu 14522* | Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ metUnif = (𝑑 ∈ ∪ ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) | ||
| Theorem | blfn 14523 | The ball function has universal domain. (Contributed by Jim Kingdon, 24-Sep-2025.) |
| ⊢ ball Fn V | ||
| Theorem | mopnset 14524 | Getting a set by applying MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.) |
| ⊢ (𝐷 ∈ 𝑉 → (MetOpen‘𝐷) ∈ V) | ||
| Theorem | cndsex 14525 | The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.) |
| ⊢ (abs ∘ − ) ∈ V | ||
| Theorem | cntopex 14526 | The standard topology on the complex numbers is a set. (Contributed by Jim Kingdon, 25-Sep-2025.) |
| ⊢ (MetOpen‘(abs ∘ − )) ∈ V | ||
| Theorem | metuex 14527 | Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → (metUnif‘𝐴) ∈ V) | ||
| Syntax | ccnfld 14528 | Extend class notation with the field of complex numbers. |
| class ℂfld | ||
| Definition | df-cnfld 14529* |
The field of complex numbers. Other number fields and rings can be
constructed by applying the ↾s
restriction operator.
The contract of this set is defined entirely by cnfldex 14531, cnfldadd 14534, cnfldmul 14536, cnfldcj 14537, cnfldtset 14538, cnfldle 14539, cnfldds 14540, and cnfldbas 14532. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.) |
| ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | ||
| Theorem | cnfldstr 14530 | The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
| ⊢ ℂfld Struct 〈1, ;13〉 | ||
| Theorem | cnfldex 14531 | The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
| ⊢ ℂfld ∈ V | ||
| Theorem | cnfldbas 14532 | The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
| ⊢ ℂ = (Base‘ℂfld) | ||
| Theorem | mpocnfldadd 14533* | The addition operation of the field of complex numbers. Version of cnfldadd 14534 using maps-to notation, which does not require ax-addf 8129. (Contributed by GG, 31-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (+g‘ℂfld) | ||
| Theorem | cnfldadd 14534 | The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 27-Apr-2025.) |
| ⊢ + = (+g‘ℂfld) | ||
| Theorem | mpocnfldmul 14535* | The multiplication operation of the field of complex numbers. Version of cnfldmul 14536 using maps-to notation, which does not require ax-mulf 8130. (Contributed by GG, 31-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (.r‘ℂfld) | ||
| Theorem | cnfldmul 14536 | The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 27-Apr-2025.) |
| ⊢ · = (.r‘ℂfld) | ||
| Theorem | cnfldcj 14537 | The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
| ⊢ ∗ = (*𝑟‘ℂfld) | ||
| Theorem | cnfldtset 14538 | The topology component of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 31-Mar-2025.) |
| ⊢ (MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld) | ||
| Theorem | cnfldle 14539 | The ordering of the field of complex numbers. Note that this is not actually an ordering on ℂ, but we put it in the structure anyway because restricting to ℝ does not affect this component, so that (ℂfld ↾s ℝ) is an ordered field even though ℂfld itself is not. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14529. (Revised by GG, 31-Mar-2025.) |
| ⊢ ≤ = (le‘ℂfld) | ||
| Theorem | cnfldds 14540 | The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14529. (Revised by GG, 31-Mar-2025.) |
| ⊢ (abs ∘ − ) = (dist‘ℂfld) | ||
| Theorem | cncrng 14541 | The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.) |
| ⊢ ℂfld ∈ CRing | ||
| Theorem | cnring 14542 | The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ ℂfld ∈ Ring | ||
| Theorem | cnfld0 14543 | Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 0 = (0g‘ℂfld) | ||
| Theorem | cnfld1 14544 | One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 1 = (1r‘ℂfld) | ||
| Theorem | cnfldneg 14545 | The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ (𝑋 ∈ ℂ → ((invg‘ℂfld)‘𝑋) = -𝑋) | ||
| Theorem | cnfldplusf 14546 | The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ + = (+𝑓‘ℂfld) | ||
| Theorem | cnfldsub 14547 | The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ − = (-g‘ℂfld) | ||
| Theorem | cnfldmulg 14548 | The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)) | ||
| Theorem | cnfldexp 14549 | The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝐵)) | ||
| Theorem | cnsubmlem 14550* | Lemma for nn0subm 14555 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ 0 ∈ 𝐴 ⇒ ⊢ 𝐴 ∈ (SubMnd‘ℂfld) | ||
| Theorem | cnsubglem 14551* | Lemma for cnsubrglem 14552 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 𝐵 ∈ 𝐴 ⇒ ⊢ 𝐴 ∈ (SubGrp‘ℂfld) | ||
| Theorem | cnsubrglem 14552* | Lemma for zsubrg 14553 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) ⇒ ⊢ 𝐴 ∈ (SubRing‘ℂfld) | ||
| Theorem | zsubrg 14553 | The integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ ℤ ∈ (SubRing‘ℂfld) | ||
| Theorem | gzsubrg 14554 | The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ ℤ[i] ∈ (SubRing‘ℂfld) | ||
| Theorem | nn0subm 14555 | The nonnegative integers form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ ℕ0 ∈ (SubMnd‘ℂfld) | ||
| Theorem | rege0subm 14556 | The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (0[,)+∞) ∈ (SubMnd‘ℂfld) | ||
| Theorem | zsssubrg 14557 | The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅) | ||
| Theorem | gsumfzfsumlem0 14558* | Lemma for gsumfzfsum 14560. The case where the sum is empty. (Contributed by Jim Kingdon, 9-Sep-2025.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑁 < 𝑀) ⇒ ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) | ||
| Theorem | gsumfzfsumlemm 14559* | Lemma for gsumfzfsum 14560. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) | ||
| Theorem | gsumfzfsum 14560* | Relate a group sum on ℂfld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) | ||
| Theorem | cnfldui 14561 | The invertible complex numbers are exactly those apart from zero. This is recapb 8826 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.) |
| ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld) | ||
According to Wikipedia ("Integer", 25-May-2019, https://en.wikipedia.org/wiki/Integer) "The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property, namely to be an initial object in the category of [unital] rings, characterizes the ring 𝑍." In set.mm, there was no explicit definition for the ring of integers until June 2019, but it was denoted by (ℂfld ↾s ℤ), the field of complex numbers restricted to the integers. In zringring 14565 it is shown that this restriction is a ring, and zringbas 14568 shows that its base set is the integers. As of June 2019, there is an abbreviation of this expression as Definition df-zring 14563 of the ring of integers. Remark: Instead of using the symbol "ZZrng" analogous to ℂfld used for the field of complex numbers, we have chosen the version with an "i" to indicate that the ring of integers is a unital ring, see also Wikipedia ("Rng (algebra)", 9-Jun-2019, https://en.wikipedia.org/wiki/Rng_(algebra) 14563). | ||
| Syntax | czring 14562 | Extend class notation with the (unital) ring of integers. |
| class ℤring | ||
| Definition | df-zring 14563 | The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
| ⊢ ℤring = (ℂfld ↾s ℤ) | ||
| Theorem | zringcrng 14564 | The ring of integers is a commutative ring. (Contributed by AV, 13-Jun-2019.) |
| ⊢ ℤring ∈ CRing | ||
| Theorem | zringring 14565 | The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.) |
| ⊢ ℤring ∈ Ring | ||
| Theorem | zringabl 14566 | The ring of integers is an (additive) abelian group. (Contributed by AV, 13-Jun-2019.) |
| ⊢ ℤring ∈ Abel | ||
| Theorem | zringgrp 14567 | The ring of integers is an (additive) group. (Contributed by AV, 10-Jun-2019.) |
| ⊢ ℤring ∈ Grp | ||
| Theorem | zringbas 14568 | The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
| ⊢ ℤ = (Base‘ℤring) | ||
| Theorem | zringplusg 14569 | The addition operation of the ring of integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
| ⊢ + = (+g‘ℤring) | ||
| Theorem | zringmulg 14570 | The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴(.g‘ℤring)𝐵) = (𝐴 · 𝐵)) | ||
| Theorem | zringmulr 14571 | The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
| ⊢ · = (.r‘ℤring) | ||
| Theorem | zring0 14572 | The zero element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
| ⊢ 0 = (0g‘ℤring) | ||
| Theorem | zring1 14573 | The unity element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
| ⊢ 1 = (1r‘ℤring) | ||
| Theorem | zringnzr 14574 | The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.) |
| ⊢ ℤring ∈ NzRing | ||
| Theorem | dvdsrzring 14575 | Ring divisibility in the ring of integers corresponds to ordinary divisibility in ℤ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
| ⊢ ∥ = (∥r‘ℤring) | ||
| Theorem | zringinvg 14576 | The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ (𝐴 ∈ ℤ → -𝐴 = ((invg‘ℤring)‘𝐴)) | ||
| Theorem | zringsubgval 14577 | Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.) |
| ⊢ − = (-g‘ℤring) ⇒ ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) | ||
| Theorem | zringmpg 14578 | The multiplicative group of the ring of integers is the restriction of the multiplicative group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.) |
| ⊢ ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring) | ||
| Theorem | expghmap 14579* | Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.) |
| ⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ 𝑈 = (𝑀 ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0}) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) | ||
| Theorem | mulgghm2 14580* | The powers of a group element give a homomorphism from ℤ to a group. The name 1 should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| ⊢ · = (.g‘𝑅) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅)) | ||
| Theorem | mulgrhm 14581* | The powers of the element 1 give a ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| ⊢ · = (.g‘𝑅) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅)) | ||
| Theorem | mulgrhm2 14582* | The powers of the element 1 give the unique ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| ⊢ · = (.g‘𝑅) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹}) | ||
| Syntax | czrh 14583 | Map the rationals into a field, or the integers into a ring. |
| class ℤRHom | ||
| Syntax | czlm 14584 | Augment an abelian group with vector space operations to turn it into a ℤ-module. |
| class ℤMod | ||
| Syntax | czn 14585 | The ring of integers modulo 𝑛. |
| class ℤ/nℤ | ||
| Definition | df-zrh 14586 | Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 𝑛 = 1r + 1r + ... + 1r for integers (see also df-mulg 13665). (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| ⊢ ℤRHom = (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) | ||
| Definition | df-zlm 14587 | Augment an abelian group with vector space operations to turn it into a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) |
| ⊢ ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉)) | ||
| Definition | df-zn 14588* | Define the ring of integers mod 𝑛. This is literally the quotient ring of ℤ by the ideal 𝑛ℤ, but we augment it with a total order. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| ⊢ ℤ/nℤ = (𝑛 ∈ ℕ0 ↦ ⦋ℤring / 𝑧⦌⦋(𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx), ⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉)) | ||
| Theorem | zrhval 14589 | Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ 𝐿 = ∪ (ℤring RingHom 𝑅) | ||
| Theorem | zrhvalg 14590 | Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐿 = ∪ (ℤring RingHom 𝑅)) | ||
| Theorem | zrhval2 14591* | Alternate value of the ℤRHom homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐿 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))) | ||
| Theorem | zrhmulg 14592 | Value of the ℤRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁 · 1 )) | ||
| Theorem | zrhex 14593 | Set existence for ℤRHom. (Contributed by Jim Kingdon, 19-May-2025.) |
| ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐿 ∈ V) | ||
| Theorem | zrhrhmb 14594 | The ℤRHom homomorphism is the unique ring homomorphism from ℤ. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐹 ∈ (ℤring RingHom 𝑅) ↔ 𝐹 = 𝐿)) | ||
| Theorem | zrhrhm 14595 | The ℤRHom homomorphism is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅)) | ||
| Theorem | zrh1 14596 | Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐿‘1) = 1 ) | ||
| Theorem | zrh0 14597 | Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐿‘0) = 0 ) | ||
| Theorem | zrhpropd 14598* | The ℤ ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (ℤRHom‘𝐾) = (ℤRHom‘𝐿)) | ||
| Theorem | zlmval 14599 | Augment an abelian group with vector space operations to turn it into a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) |
| ⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) | ||
| Theorem | zlmlemg 14600 | Lemma for zlmbasg 14601 and zlmplusgg 14602. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.) |
| ⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ∈ ℕ & ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) & ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) ⇒ ⊢ (𝐺 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑊)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |