| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > metuex | GIF version | ||
| Description: Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.) |
| Ref | Expression |
|---|---|
| metuex | ⊢ (𝐴 ∈ 𝑉 → (metUnif‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fg 14478 | . . . 4 ⊢ filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅}) | |
| 2 | vpwex 4242 | . . . . 5 ⊢ 𝒫 𝑤 ∈ V | |
| 3 | 2 | rabex 4207 | . . . 4 ⊢ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅} ∈ V |
| 4 | vex 2782 | . . . . . . 7 ⊢ 𝑑 ∈ V | |
| 5 | 4 | dmex 4967 | . . . . . 6 ⊢ dom 𝑑 ∈ V |
| 6 | 5 | dmex 4967 | . . . . 5 ⊢ dom dom 𝑑 ∈ V |
| 7 | 6, 6 | xpex 4811 | . . . 4 ⊢ (dom dom 𝑑 × dom dom 𝑑) ∈ V |
| 8 | reex 8101 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 9 | rpssre 9828 | . . . . . . 7 ⊢ ℝ+ ⊆ ℝ | |
| 10 | 8, 9 | ssexi 4201 | . . . . . 6 ⊢ ℝ+ ∈ V |
| 11 | 10 | mptex 5838 | . . . . 5 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) ∈ V |
| 12 | 11 | rnex 4968 | . . . 4 ⊢ ran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) ∈ V |
| 13 | 1, 3, 7, 12 | mpofvexi 6322 | . . 3 ⊢ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) ∈ V |
| 14 | 13 | ax-gen 1475 | . 2 ⊢ ∀𝑑((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) ∈ V |
| 15 | df-metu 14479 | . . 3 ⊢ metUnif = (𝑑 ∈ ∪ ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) | |
| 16 | 15 | mptfvex 5693 | . 2 ⊢ ((∀𝑑((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) ∈ V ∧ 𝐴 ∈ 𝑉) → (metUnif‘𝐴) ∈ V) |
| 17 | 14, 16 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → (metUnif‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1373 ∈ wcel 2180 ≠ wne 2380 {crab 2492 Vcvv 2779 ∩ cin 3176 ∅c0 3471 𝒫 cpw 3629 ∪ cuni 3867 ↦ cmpt 4124 × cxp 4694 ◡ccnv 4695 dom cdm 4696 ran crn 4697 “ cima 4699 ‘cfv 5294 (class class class)co 5974 ℝcr 7966 0cc0 7967 ℝ+crp 9817 [,)cico 10054 PsMetcpsmet 14464 fBascfbas 14468 filGencfg 14469 metUnifcmetu 14471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-rp 9818 df-fg 14478 df-metu 14479 |
| This theorem is referenced by: cnfldstr 14487 |
| Copyright terms: Public domain | W3C validator |