| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > metuex | GIF version | ||
| Description: Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.) |
| Ref | Expression |
|---|---|
| metuex | ⊢ (𝐴 ∈ 𝑉 → (metUnif‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fg 14521 | . . . 4 ⊢ filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅}) | |
| 2 | vpwex 4263 | . . . . 5 ⊢ 𝒫 𝑤 ∈ V | |
| 3 | 2 | rabex 4228 | . . . 4 ⊢ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅} ∈ V |
| 4 | vex 2802 | . . . . . . 7 ⊢ 𝑑 ∈ V | |
| 5 | 4 | dmex 4991 | . . . . . 6 ⊢ dom 𝑑 ∈ V |
| 6 | 5 | dmex 4991 | . . . . 5 ⊢ dom dom 𝑑 ∈ V |
| 7 | 6, 6 | xpex 4834 | . . . 4 ⊢ (dom dom 𝑑 × dom dom 𝑑) ∈ V |
| 8 | reex 8141 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 9 | rpssre 9868 | . . . . . . 7 ⊢ ℝ+ ⊆ ℝ | |
| 10 | 8, 9 | ssexi 4222 | . . . . . 6 ⊢ ℝ+ ∈ V |
| 11 | 10 | mptex 5869 | . . . . 5 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) ∈ V |
| 12 | 11 | rnex 4992 | . . . 4 ⊢ ran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) ∈ V |
| 13 | 1, 3, 7, 12 | mpofvexi 6358 | . . 3 ⊢ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) ∈ V |
| 14 | 13 | ax-gen 1495 | . 2 ⊢ ∀𝑑((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) ∈ V |
| 15 | df-metu 14522 | . . 3 ⊢ metUnif = (𝑑 ∈ ∪ ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) | |
| 16 | 15 | mptfvex 5722 | . 2 ⊢ ((∀𝑑((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) ∈ V ∧ 𝐴 ∈ 𝑉) → (metUnif‘𝐴) ∈ V) |
| 17 | 14, 16 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → (metUnif‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 ∈ wcel 2200 ≠ wne 2400 {crab 2512 Vcvv 2799 ∩ cin 3196 ∅c0 3491 𝒫 cpw 3649 ∪ cuni 3888 ↦ cmpt 4145 × cxp 4717 ◡ccnv 4718 dom cdm 4719 ran crn 4720 “ cima 4722 ‘cfv 5318 (class class class)co 6007 ℝcr 8006 0cc0 8007 ℝ+crp 9857 [,)cico 10094 PsMetcpsmet 14507 fBascfbas 14511 filGencfg 14512 metUnifcmetu 14514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-rp 9858 df-fg 14521 df-metu 14522 |
| This theorem is referenced by: cnfldstr 14530 |
| Copyright terms: Public domain | W3C validator |