ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metuex GIF version

Theorem metuex 14527
Description: Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
Assertion
Ref Expression
metuex (𝐴𝑉 → (metUnif‘𝐴) ∈ V)

Proof of Theorem metuex
Dummy variables 𝑑 𝑎 𝑥 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fg 14521 . . . 4 filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅})
2 vpwex 4263 . . . . 5 𝒫 𝑤 ∈ V
32rabex 4228 . . . 4 {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅} ∈ V
4 vex 2802 . . . . . . 7 𝑑 ∈ V
54dmex 4991 . . . . . 6 dom 𝑑 ∈ V
65dmex 4991 . . . . 5 dom dom 𝑑 ∈ V
76, 6xpex 4834 . . . 4 (dom dom 𝑑 × dom dom 𝑑) ∈ V
8 reex 8141 . . . . . . 7 ℝ ∈ V
9 rpssre 9868 . . . . . . 7 + ⊆ ℝ
108, 9ssexi 4222 . . . . . 6 + ∈ V
1110mptex 5869 . . . . 5 (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎))) ∈ V
1211rnex 4992 . . . 4 ran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎))) ∈ V
131, 3, 7, 12mpofvexi 6358 . . 3 ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))) ∈ V
1413ax-gen 1495 . 2 𝑑((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))) ∈ V
15 df-metu 14522 . . 3 metUnif = (𝑑 ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))))
1615mptfvex 5722 . 2 ((∀𝑑((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))) ∈ V ∧ 𝐴𝑉) → (metUnif‘𝐴) ∈ V)
1714, 16mpan 424 1 (𝐴𝑉 → (metUnif‘𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393  wcel 2200  wne 2400  {crab 2512  Vcvv 2799  cin 3196  c0 3491  𝒫 cpw 3649   cuni 3888  cmpt 4145   × cxp 4717  ccnv 4718  dom cdm 4719  ran crn 4720  cima 4722  cfv 5318  (class class class)co 6007  cr 8006  0cc0 8007  +crp 9857  [,)cico 10094  PsMetcpsmet 14507  fBascfbas 14511  filGencfg 14512  metUnifcmetu 14514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-rp 9858  df-fg 14521  df-metu 14522
This theorem is referenced by:  cnfldstr  14530
  Copyright terms: Public domain W3C validator