ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metuex GIF version

Theorem metuex 14361
Description: Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
Assertion
Ref Expression
metuex (𝐴𝑉 → (metUnif‘𝐴) ∈ V)

Proof of Theorem metuex
Dummy variables 𝑑 𝑎 𝑥 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fg 14355 . . . 4 filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅})
2 vpwex 4227 . . . . 5 𝒫 𝑤 ∈ V
32rabex 4192 . . . 4 {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅} ∈ V
4 vex 2776 . . . . . . 7 𝑑 ∈ V
54dmex 4950 . . . . . 6 dom 𝑑 ∈ V
65dmex 4950 . . . . 5 dom dom 𝑑 ∈ V
76, 6xpex 4794 . . . 4 (dom dom 𝑑 × dom dom 𝑑) ∈ V
8 reex 8066 . . . . . . 7 ℝ ∈ V
9 rpssre 9793 . . . . . . 7 + ⊆ ℝ
108, 9ssexi 4186 . . . . . 6 + ∈ V
1110mptex 5817 . . . . 5 (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎))) ∈ V
1211rnex 4951 . . . 4 ran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎))) ∈ V
131, 3, 7, 12mpofvexi 6299 . . 3 ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))) ∈ V
1413ax-gen 1473 . 2 𝑑((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))) ∈ V
15 df-metu 14356 . . 3 metUnif = (𝑑 ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))))
1615mptfvex 5672 . 2 ((∀𝑑((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))) ∈ V ∧ 𝐴𝑉) → (metUnif‘𝐴) ∈ V)
1714, 16mpan 424 1 (𝐴𝑉 → (metUnif‘𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wcel 2177  wne 2377  {crab 2489  Vcvv 2773  cin 3166  c0 3461  𝒫 cpw 3617   cuni 3852  cmpt 4109   × cxp 4677  ccnv 4678  dom cdm 4679  ran crn 4680  cima 4682  cfv 5276  (class class class)co 5951  cr 7931  0cc0 7932  +crp 9782  [,)cico 10019  PsMetcpsmet 14341  fBascfbas 14345  filGencfg 14346  metUnifcmetu 14348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-rp 9783  df-fg 14355  df-metu 14356
This theorem is referenced by:  cnfldstr  14364
  Copyright terms: Public domain W3C validator