| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > metuex | GIF version | ||
| Description: Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.) |
| Ref | Expression |
|---|---|
| metuex | ⊢ (𝐴 ∈ 𝑉 → (metUnif‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fg 14181 | . . . 4 ⊢ filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅}) | |
| 2 | vpwex 4213 | . . . . 5 ⊢ 𝒫 𝑤 ∈ V | |
| 3 | 2 | rabex 4178 | . . . 4 ⊢ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅} ∈ V |
| 4 | vex 2766 | . . . . . . 7 ⊢ 𝑑 ∈ V | |
| 5 | 4 | dmex 4933 | . . . . . 6 ⊢ dom 𝑑 ∈ V |
| 6 | 5 | dmex 4933 | . . . . 5 ⊢ dom dom 𝑑 ∈ V |
| 7 | 6, 6 | xpex 4779 | . . . 4 ⊢ (dom dom 𝑑 × dom dom 𝑑) ∈ V |
| 8 | reex 8030 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 9 | rpssre 9756 | . . . . . . 7 ⊢ ℝ+ ⊆ ℝ | |
| 10 | 8, 9 | ssexi 4172 | . . . . . 6 ⊢ ℝ+ ∈ V |
| 11 | 10 | mptex 5791 | . . . . 5 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) ∈ V |
| 12 | 11 | rnex 4934 | . . . 4 ⊢ ran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) ∈ V |
| 13 | 1, 3, 7, 12 | mpofvexi 6273 | . . 3 ⊢ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) ∈ V |
| 14 | 13 | ax-gen 1463 | . 2 ⊢ ∀𝑑((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) ∈ V |
| 15 | df-metu 14182 | . . 3 ⊢ metUnif = (𝑑 ∈ ∪ ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) | |
| 16 | 15 | mptfvex 5650 | . 2 ⊢ ((∀𝑑((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) ∈ V ∧ 𝐴 ∈ 𝑉) → (metUnif‘𝐴) ∈ V) |
| 17 | 14, 16 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → (metUnif‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ∈ wcel 2167 ≠ wne 2367 {crab 2479 Vcvv 2763 ∩ cin 3156 ∅c0 3451 𝒫 cpw 3606 ∪ cuni 3840 ↦ cmpt 4095 × cxp 4662 ◡ccnv 4663 dom cdm 4664 ran crn 4665 “ cima 4667 ‘cfv 5259 (class class class)co 5925 ℝcr 7895 0cc0 7896 ℝ+crp 9745 [,)cico 9982 PsMetcpsmet 14167 fBascfbas 14171 filGencfg 14172 metUnifcmetu 14174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-rp 9746 df-fg 14181 df-metu 14182 |
| This theorem is referenced by: cnfldstr 14190 |
| Copyright terms: Public domain | W3C validator |