| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > metuex | GIF version | ||
| Description: Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.) |
| Ref | Expression |
|---|---|
| metuex | ⊢ (𝐴 ∈ 𝑉 → (metUnif‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fg 14355 | . . . 4 ⊢ filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅}) | |
| 2 | vpwex 4227 | . . . . 5 ⊢ 𝒫 𝑤 ∈ V | |
| 3 | 2 | rabex 4192 | . . . 4 ⊢ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅} ∈ V |
| 4 | vex 2776 | . . . . . . 7 ⊢ 𝑑 ∈ V | |
| 5 | 4 | dmex 4950 | . . . . . 6 ⊢ dom 𝑑 ∈ V |
| 6 | 5 | dmex 4950 | . . . . 5 ⊢ dom dom 𝑑 ∈ V |
| 7 | 6, 6 | xpex 4794 | . . . 4 ⊢ (dom dom 𝑑 × dom dom 𝑑) ∈ V |
| 8 | reex 8066 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 9 | rpssre 9793 | . . . . . . 7 ⊢ ℝ+ ⊆ ℝ | |
| 10 | 8, 9 | ssexi 4186 | . . . . . 6 ⊢ ℝ+ ∈ V |
| 11 | 10 | mptex 5817 | . . . . 5 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) ∈ V |
| 12 | 11 | rnex 4951 | . . . 4 ⊢ ran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) ∈ V |
| 13 | 1, 3, 7, 12 | mpofvexi 6299 | . . 3 ⊢ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) ∈ V |
| 14 | 13 | ax-gen 1473 | . 2 ⊢ ∀𝑑((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) ∈ V |
| 15 | df-metu 14356 | . . 3 ⊢ metUnif = (𝑑 ∈ ∪ ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) | |
| 16 | 15 | mptfvex 5672 | . 2 ⊢ ((∀𝑑((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) ∈ V ∧ 𝐴 ∈ 𝑉) → (metUnif‘𝐴) ∈ V) |
| 17 | 14, 16 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → (metUnif‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 ∈ wcel 2177 ≠ wne 2377 {crab 2489 Vcvv 2773 ∩ cin 3166 ∅c0 3461 𝒫 cpw 3617 ∪ cuni 3852 ↦ cmpt 4109 × cxp 4677 ◡ccnv 4678 dom cdm 4679 ran crn 4680 “ cima 4682 ‘cfv 5276 (class class class)co 5951 ℝcr 7931 0cc0 7932 ℝ+crp 9782 [,)cico 10019 PsMetcpsmet 14341 fBascfbas 14345 filGencfg 14346 metUnifcmetu 14348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-rp 9783 df-fg 14355 df-metu 14356 |
| This theorem is referenced by: cnfldstr 14364 |
| Copyright terms: Public domain | W3C validator |