![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > metuex | GIF version |
Description: Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.) |
Ref | Expression |
---|---|
metuex | ⊢ (𝐴 ∈ 𝑉 → (metUnif‘𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fg 14048 | . . . 4 ⊢ filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅}) | |
2 | vpwex 4209 | . . . . 5 ⊢ 𝒫 𝑤 ∈ V | |
3 | 2 | rabex 4174 | . . . 4 ⊢ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅} ∈ V |
4 | vex 2763 | . . . . . . 7 ⊢ 𝑑 ∈ V | |
5 | 4 | dmex 4929 | . . . . . 6 ⊢ dom 𝑑 ∈ V |
6 | 5 | dmex 4929 | . . . . 5 ⊢ dom dom 𝑑 ∈ V |
7 | 6, 6 | xpex 4775 | . . . 4 ⊢ (dom dom 𝑑 × dom dom 𝑑) ∈ V |
8 | reex 8008 | . . . . . . 7 ⊢ ℝ ∈ V | |
9 | rpssre 9733 | . . . . . . 7 ⊢ ℝ+ ⊆ ℝ | |
10 | 8, 9 | ssexi 4168 | . . . . . 6 ⊢ ℝ+ ∈ V |
11 | 10 | mptex 5785 | . . . . 5 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) ∈ V |
12 | 11 | rnex 4930 | . . . 4 ⊢ ran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) ∈ V |
13 | 1, 3, 7, 12 | mpofvexi 6261 | . . 3 ⊢ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) ∈ V |
14 | 13 | ax-gen 1460 | . 2 ⊢ ∀𝑑((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) ∈ V |
15 | df-metu 14049 | . . 3 ⊢ metUnif = (𝑑 ∈ ∪ ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) | |
16 | 15 | mptfvex 5644 | . 2 ⊢ ((∀𝑑((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) ∈ V ∧ 𝐴 ∈ 𝑉) → (metUnif‘𝐴) ∈ V) |
17 | 14, 16 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → (metUnif‘𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 ∈ wcel 2164 ≠ wne 2364 {crab 2476 Vcvv 2760 ∩ cin 3153 ∅c0 3447 𝒫 cpw 3602 ∪ cuni 3836 ↦ cmpt 4091 × cxp 4658 ◡ccnv 4659 dom cdm 4660 ran crn 4661 “ cima 4663 ‘cfv 5255 (class class class)co 5919 ℝcr 7873 0cc0 7874 ℝ+crp 9722 [,)cico 9959 PsMetcpsmet 14034 fBascfbas 14038 filGencfg 14039 metUnifcmetu 14041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-rp 9723 df-fg 14048 df-metu 14049 |
This theorem is referenced by: cnfldstr 14057 |
Copyright terms: Public domain | W3C validator |