![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > blfn | GIF version |
Description: The ball function has universal domain. (Contributed by Jim Kingdon, 24-Sep-2025.) |
Ref | Expression |
---|---|
blfn | ⊢ ball Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . . . 5 ⊢ 𝑑 ∈ V | |
2 | 1 | dmex 4929 | . . . 4 ⊢ dom 𝑑 ∈ V |
3 | 2 | dmex 4929 | . . 3 ⊢ dom dom 𝑑 ∈ V |
4 | xrex 9925 | . . 3 ⊢ ℝ* ∈ V | |
5 | 3, 4 | mpoex 6269 | . 2 ⊢ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧}) ∈ V |
6 | df-bl 14045 | . 2 ⊢ ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧})) | |
7 | 5, 6 | fnmpti 5383 | 1 ⊢ ball Fn V |
Colors of variables: wff set class |
Syntax hints: {crab 2476 Vcvv 2760 class class class wbr 4030 dom cdm 4660 Fn wfn 5250 (class class class)co 5919 ∈ cmpo 5921 ℝ*cxr 8055 < clt 8056 ballcbl 14037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-bl 14045 |
This theorem is referenced by: mopnset 14051 |
Copyright terms: Public domain | W3C validator |