ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod GIF version

Definition df-mod 10258
Description: Define the modulo (remainder) operation. See modqval 10259 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 10205 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10257 . 2 class mod
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cr 7752 . . 3 class
5 crp 9589 . . 3 class +
62cv 1342 . . . 4 class 𝑥
73cv 1342 . . . . 5 class 𝑦
8 cdiv 8568 . . . . . . 7 class /
96, 7, 8co 5842 . . . . . 6 class (𝑥 / 𝑦)
10 cfl 10203 . . . . . 6 class
119, 10cfv 5188 . . . . 5 class (⌊‘(𝑥 / 𝑦))
12 cmul 7758 . . . . 5 class ·
137, 11, 12co 5842 . . . 4 class (𝑦 · (⌊‘(𝑥 / 𝑦)))
14 cmin 8069 . . . 4 class
156, 13, 14co 5842 . . 3 class (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))
162, 3, 4, 5, 15cmpo 5844 . 2 class (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
171, 16wceq 1343 1 wff mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Colors of variables: wff set class
This definition is referenced by:  modqval  10259
  Copyright terms: Public domain W3C validator