ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod GIF version

Definition df-mod 10432
Description: Define the modulo (remainder) operation. See modqval 10433 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 10377 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10431 . 2 class mod
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cr 7895 . . 3 class
5 crp 9745 . . 3 class +
62cv 1363 . . . 4 class 𝑥
73cv 1363 . . . . 5 class 𝑦
8 cdiv 8716 . . . . . . 7 class /
96, 7, 8co 5925 . . . . . 6 class (𝑥 / 𝑦)
10 cfl 10375 . . . . . 6 class
119, 10cfv 5259 . . . . 5 class (⌊‘(𝑥 / 𝑦))
12 cmul 7901 . . . . 5 class ·
137, 11, 12co 5925 . . . 4 class (𝑦 · (⌊‘(𝑥 / 𝑦)))
14 cmin 8214 . . . 4 class
156, 13, 14co 5925 . . 3 class (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))
162, 3, 4, 5, 15cmpo 5927 . 2 class (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
171, 16wceq 1364 1 wff mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Colors of variables: wff set class
This definition is referenced by:  modqval  10433
  Copyright terms: Public domain W3C validator