ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod GIF version

Definition df-mod 10415
Description: Define the modulo (remainder) operation. See modqval 10416 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 10360 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10414 . 2 class mod
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cr 7878 . . 3 class
5 crp 9728 . . 3 class +
62cv 1363 . . . 4 class 𝑥
73cv 1363 . . . . 5 class 𝑦
8 cdiv 8699 . . . . . . 7 class /
96, 7, 8co 5922 . . . . . 6 class (𝑥 / 𝑦)
10 cfl 10358 . . . . . 6 class
119, 10cfv 5258 . . . . 5 class (⌊‘(𝑥 / 𝑦))
12 cmul 7884 . . . . 5 class ·
137, 11, 12co 5922 . . . 4 class (𝑦 · (⌊‘(𝑥 / 𝑦)))
14 cmin 8197 . . . 4 class
156, 13, 14co 5922 . . 3 class (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))
162, 3, 4, 5, 15cmpo 5924 . 2 class (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
171, 16wceq 1364 1 wff mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Colors of variables: wff set class
This definition is referenced by:  modqval  10416
  Copyright terms: Public domain W3C validator