ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod GIF version

Definition df-mod 10475
Description: Define the modulo (remainder) operation. See modqval 10476 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 10420 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10474 . 2 class mod
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cr 7931 . . 3 class
5 crp 9782 . . 3 class +
62cv 1372 . . . 4 class 𝑥
73cv 1372 . . . . 5 class 𝑦
8 cdiv 8752 . . . . . . 7 class /
96, 7, 8co 5951 . . . . . 6 class (𝑥 / 𝑦)
10 cfl 10418 . . . . . 6 class
119, 10cfv 5276 . . . . 5 class (⌊‘(𝑥 / 𝑦))
12 cmul 7937 . . . . 5 class ·
137, 11, 12co 5951 . . . 4 class (𝑦 · (⌊‘(𝑥 / 𝑦)))
14 cmin 8250 . . . 4 class
156, 13, 14co 5951 . . 3 class (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))
162, 3, 4, 5, 15cmpo 5953 . 2 class (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
171, 16wceq 1373 1 wff mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Colors of variables: wff set class
This definition is referenced by:  modqval  10476
  Copyright terms: Public domain W3C validator