ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod GIF version

Definition df-mod 10291
Description: Define the modulo (remainder) operation. See modqval 10292 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 10238 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10290 . 2 class mod
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cr 7785 . . 3 class
5 crp 9622 . . 3 class +
62cv 1352 . . . 4 class 𝑥
73cv 1352 . . . . 5 class 𝑦
8 cdiv 8601 . . . . . . 7 class /
96, 7, 8co 5865 . . . . . 6 class (𝑥 / 𝑦)
10 cfl 10236 . . . . . 6 class
119, 10cfv 5208 . . . . 5 class (⌊‘(𝑥 / 𝑦))
12 cmul 7791 . . . . 5 class ·
137, 11, 12co 5865 . . . 4 class (𝑦 · (⌊‘(𝑥 / 𝑦)))
14 cmin 8102 . . . 4 class
156, 13, 14co 5865 . . 3 class (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))
162, 3, 4, 5, 15cmpo 5867 . 2 class (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
171, 16wceq 1353 1 wff mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Colors of variables: wff set class
This definition is referenced by:  modqval  10292
  Copyright terms: Public domain W3C validator