ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod GIF version

Definition df-mod 10323
Description: Define the modulo (remainder) operation. See modqval 10324 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 10270 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod mod = (๐‘ฅ โˆˆ โ„, ๐‘ฆ โˆˆ โ„+ โ†ฆ (๐‘ฅ โˆ’ (๐‘ฆ ยท (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ)))))
Distinct variable group:   ๐‘ฅ,๐‘ฆ

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10322 . 2 class mod
2 vx . . 3 setvar ๐‘ฅ
3 vy . . 3 setvar ๐‘ฆ
4 cr 7810 . . 3 class โ„
5 crp 9653 . . 3 class โ„+
62cv 1352 . . . 4 class ๐‘ฅ
73cv 1352 . . . . 5 class ๐‘ฆ
8 cdiv 8629 . . . . . . 7 class /
96, 7, 8co 5875 . . . . . 6 class (๐‘ฅ / ๐‘ฆ)
10 cfl 10268 . . . . . 6 class โŒŠ
119, 10cfv 5217 . . . . 5 class (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ))
12 cmul 7816 . . . . 5 class ยท
137, 11, 12co 5875 . . . 4 class (๐‘ฆ ยท (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ)))
14 cmin 8128 . . . 4 class โˆ’
156, 13, 14co 5875 . . 3 class (๐‘ฅ โˆ’ (๐‘ฆ ยท (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ))))
162, 3, 4, 5, 15cmpo 5877 . 2 class (๐‘ฅ โˆˆ โ„, ๐‘ฆ โˆˆ โ„+ โ†ฆ (๐‘ฅ โˆ’ (๐‘ฆ ยท (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ)))))
171, 16wceq 1353 1 wff mod = (๐‘ฅ โˆˆ โ„, ๐‘ฆ โˆˆ โ„+ โ†ฆ (๐‘ฅ โˆ’ (๐‘ฆ ยท (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ)))))
Colors of variables: wff set class
This definition is referenced by:  modqval  10324
  Copyright terms: Public domain W3C validator