ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod GIF version

Definition df-mod 10512
Description: Define the modulo (remainder) operation. See modqval 10513 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 10457 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10511 . 2 class mod
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cr 7966 . . 3 class
5 crp 9817 . . 3 class +
62cv 1374 . . . 4 class 𝑥
73cv 1374 . . . . 5 class 𝑦
8 cdiv 8787 . . . . . . 7 class /
96, 7, 8co 5974 . . . . . 6 class (𝑥 / 𝑦)
10 cfl 10455 . . . . . 6 class
119, 10cfv 5294 . . . . 5 class (⌊‘(𝑥 / 𝑦))
12 cmul 7972 . . . . 5 class ·
137, 11, 12co 5974 . . . 4 class (𝑦 · (⌊‘(𝑥 / 𝑦)))
14 cmin 8285 . . . 4 class
156, 13, 14co 5974 . . 3 class (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))
162, 3, 4, 5, 15cmpo 5976 . 2 class (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
171, 16wceq 1375 1 wff mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Colors of variables: wff set class
This definition is referenced by:  modqval  10513
  Copyright terms: Public domain W3C validator