![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-mod | GIF version |
Description: Define the modulo (remainder) operation. See modqval 10355 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 10301 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.) |
Ref | Expression |
---|---|
df-mod | ⊢ mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmo 10353 | . 2 class mod | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cr 7840 | . . 3 class ℝ | |
5 | crp 9683 | . . 3 class ℝ+ | |
6 | 2 | cv 1363 | . . . 4 class 𝑥 |
7 | 3 | cv 1363 | . . . . 5 class 𝑦 |
8 | cdiv 8659 | . . . . . . 7 class / | |
9 | 6, 7, 8 | co 5896 | . . . . . 6 class (𝑥 / 𝑦) |
10 | cfl 10299 | . . . . . 6 class ⌊ | |
11 | 9, 10 | cfv 5235 | . . . . 5 class (⌊‘(𝑥 / 𝑦)) |
12 | cmul 7846 | . . . . 5 class · | |
13 | 7, 11, 12 | co 5896 | . . . 4 class (𝑦 · (⌊‘(𝑥 / 𝑦))) |
14 | cmin 8158 | . . . 4 class − | |
15 | 6, 13, 14 | co 5896 | . . 3 class (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))) |
16 | 2, 3, 4, 5, 15 | cmpo 5898 | . 2 class (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))) |
17 | 1, 16 | wceq 1364 | 1 wff mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))) |
Colors of variables: wff set class |
This definition is referenced by: modqval 10355 |
Copyright terms: Public domain | W3C validator |