ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod GIF version

Definition df-mod 10279
Description: Define the modulo (remainder) operation. See modqval 10280 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 10226 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10278 . 2 class mod
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cr 7773 . . 3 class
5 crp 9610 . . 3 class +
62cv 1347 . . . 4 class 𝑥
73cv 1347 . . . . 5 class 𝑦
8 cdiv 8589 . . . . . . 7 class /
96, 7, 8co 5853 . . . . . 6 class (𝑥 / 𝑦)
10 cfl 10224 . . . . . 6 class
119, 10cfv 5198 . . . . 5 class (⌊‘(𝑥 / 𝑦))
12 cmul 7779 . . . . 5 class ·
137, 11, 12co 5853 . . . 4 class (𝑦 · (⌊‘(𝑥 / 𝑦)))
14 cmin 8090 . . . 4 class
156, 13, 14co 5853 . . 3 class (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))
162, 3, 4, 5, 15cmpo 5855 . 2 class (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
171, 16wceq 1348 1 wff mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Colors of variables: wff set class
This definition is referenced by:  modqval  10280
  Copyright terms: Public domain W3C validator