ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod GIF version

Definition df-mod 9983
Description: Define the modulo (remainder) operation. See modqval 9984 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 9930 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 9982 . 2 class mod
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cr 7540 . . 3 class
5 crp 9337 . . 3 class +
62cv 1311 . . . 4 class 𝑥
73cv 1311 . . . . 5 class 𝑦
8 cdiv 8339 . . . . . . 7 class /
96, 7, 8co 5726 . . . . . 6 class (𝑥 / 𝑦)
10 cfl 9928 . . . . . 6 class
119, 10cfv 5079 . . . . 5 class (⌊‘(𝑥 / 𝑦))
12 cmul 7546 . . . . 5 class ·
137, 11, 12co 5726 . . . 4 class (𝑦 · (⌊‘(𝑥 / 𝑦)))
14 cmin 7850 . . . 4 class
156, 13, 14co 5726 . . 3 class (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))
162, 3, 4, 5, 15cmpo 5728 . 2 class (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
171, 16wceq 1312 1 wff mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Colors of variables: wff set class
This definition is referenced by:  modqval  9984
  Copyright terms: Public domain W3C validator