ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod GIF version

Definition df-mod 10322
Description: Define the modulo (remainder) operation. See modqval 10323 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 10269 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod mod = (๐‘ฅ โˆˆ โ„, ๐‘ฆ โˆˆ โ„+ โ†ฆ (๐‘ฅ โˆ’ (๐‘ฆ ยท (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ)))))
Distinct variable group:   ๐‘ฅ,๐‘ฆ

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10321 . 2 class mod
2 vx . . 3 setvar ๐‘ฅ
3 vy . . 3 setvar ๐‘ฆ
4 cr 7809 . . 3 class โ„
5 crp 9652 . . 3 class โ„+
62cv 1352 . . . 4 class ๐‘ฅ
73cv 1352 . . . . 5 class ๐‘ฆ
8 cdiv 8628 . . . . . . 7 class /
96, 7, 8co 5874 . . . . . 6 class (๐‘ฅ / ๐‘ฆ)
10 cfl 10267 . . . . . 6 class โŒŠ
119, 10cfv 5216 . . . . 5 class (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ))
12 cmul 7815 . . . . 5 class ยท
137, 11, 12co 5874 . . . 4 class (๐‘ฆ ยท (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ)))
14 cmin 8127 . . . 4 class โˆ’
156, 13, 14co 5874 . . 3 class (๐‘ฅ โˆ’ (๐‘ฆ ยท (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ))))
162, 3, 4, 5, 15cmpo 5876 . 2 class (๐‘ฅ โˆˆ โ„, ๐‘ฆ โˆˆ โ„+ โ†ฆ (๐‘ฅ โˆ’ (๐‘ฆ ยท (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ)))))
171, 16wceq 1353 1 wff mod = (๐‘ฅ โˆˆ โ„, ๐‘ฆ โˆˆ โ„+ โ†ฆ (๐‘ฅ โˆ’ (๐‘ฆ ยท (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ)))))
Colors of variables: wff set class
This definition is referenced by:  modqval  10323
  Copyright terms: Public domain W3C validator