Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-mod | GIF version |
Description: Define the modulo (remainder) operation. See modqval 10292 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 10238 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.) |
Ref | Expression |
---|---|
df-mod | ⊢ mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmo 10290 | . 2 class mod | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cr 7785 | . . 3 class ℝ | |
5 | crp 9622 | . . 3 class ℝ+ | |
6 | 2 | cv 1352 | . . . 4 class 𝑥 |
7 | 3 | cv 1352 | . . . . 5 class 𝑦 |
8 | cdiv 8601 | . . . . . . 7 class / | |
9 | 6, 7, 8 | co 5865 | . . . . . 6 class (𝑥 / 𝑦) |
10 | cfl 10236 | . . . . . 6 class ⌊ | |
11 | 9, 10 | cfv 5208 | . . . . 5 class (⌊‘(𝑥 / 𝑦)) |
12 | cmul 7791 | . . . . 5 class · | |
13 | 7, 11, 12 | co 5865 | . . . 4 class (𝑦 · (⌊‘(𝑥 / 𝑦))) |
14 | cmin 8102 | . . . 4 class − | |
15 | 6, 13, 14 | co 5865 | . . 3 class (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))) |
16 | 2, 3, 4, 5, 15 | cmpo 5867 | . 2 class (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))) |
17 | 1, 16 | wceq 1353 | 1 wff mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))) |
Colors of variables: wff set class |
This definition is referenced by: modqval 10292 |
Copyright terms: Public domain | W3C validator |