ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod GIF version

Definition df-mod 10337
Description: Define the modulo (remainder) operation. See modqval 10338 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 10284 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod mod = (๐‘ฅ โˆˆ โ„, ๐‘ฆ โˆˆ โ„+ โ†ฆ (๐‘ฅ โˆ’ (๐‘ฆ ยท (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ)))))
Distinct variable group:   ๐‘ฅ,๐‘ฆ

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10336 . 2 class mod
2 vx . . 3 setvar ๐‘ฅ
3 vy . . 3 setvar ๐‘ฆ
4 cr 7824 . . 3 class โ„
5 crp 9667 . . 3 class โ„+
62cv 1362 . . . 4 class ๐‘ฅ
73cv 1362 . . . . 5 class ๐‘ฆ
8 cdiv 8643 . . . . . . 7 class /
96, 7, 8co 5888 . . . . . 6 class (๐‘ฅ / ๐‘ฆ)
10 cfl 10282 . . . . . 6 class โŒŠ
119, 10cfv 5228 . . . . 5 class (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ))
12 cmul 7830 . . . . 5 class ยท
137, 11, 12co 5888 . . . 4 class (๐‘ฆ ยท (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ)))
14 cmin 8142 . . . 4 class โˆ’
156, 13, 14co 5888 . . 3 class (๐‘ฅ โˆ’ (๐‘ฆ ยท (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ))))
162, 3, 4, 5, 15cmpo 5890 . 2 class (๐‘ฅ โˆˆ โ„, ๐‘ฆ โˆˆ โ„+ โ†ฆ (๐‘ฅ โˆ’ (๐‘ฆ ยท (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ)))))
171, 16wceq 1363 1 wff mod = (๐‘ฅ โˆˆ โ„, ๐‘ฆ โˆˆ โ„+ โ†ฆ (๐‘ฅ โˆ’ (๐‘ฆ ยท (โŒŠโ€˜(๐‘ฅ / ๐‘ฆ)))))
Colors of variables: wff set class
This definition is referenced by:  modqval  10338
  Copyright terms: Public domain W3C validator