ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod GIF version

Definition df-mod 10434
Description: Define the modulo (remainder) operation. See modqval 10435 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 10379 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10433 . 2 class mod
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cr 7897 . . 3 class
5 crp 9747 . . 3 class +
62cv 1363 . . . 4 class 𝑥
73cv 1363 . . . . 5 class 𝑦
8 cdiv 8718 . . . . . . 7 class /
96, 7, 8co 5925 . . . . . 6 class (𝑥 / 𝑦)
10 cfl 10377 . . . . . 6 class
119, 10cfv 5259 . . . . 5 class (⌊‘(𝑥 / 𝑦))
12 cmul 7903 . . . . 5 class ·
137, 11, 12co 5925 . . . 4 class (𝑦 · (⌊‘(𝑥 / 𝑦)))
14 cmin 8216 . . . 4 class
156, 13, 14co 5925 . . 3 class (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))
162, 3, 4, 5, 15cmpo 5927 . 2 class (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
171, 16wceq 1364 1 wff mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Colors of variables: wff set class
This definition is referenced by:  modqval  10435
  Copyright terms: Public domain W3C validator