ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod GIF version

Definition df-mod 10394
Description: Define the modulo (remainder) operation. See modqval 10395 for its value. For example, (5 mod 3) = 2 and (-7 mod 2) = 1. As with df-fl 10339 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10393 . 2 class mod
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cr 7871 . . 3 class
5 crp 9719 . . 3 class +
62cv 1363 . . . 4 class 𝑥
73cv 1363 . . . . 5 class 𝑦
8 cdiv 8691 . . . . . . 7 class /
96, 7, 8co 5918 . . . . . 6 class (𝑥 / 𝑦)
10 cfl 10337 . . . . . 6 class
119, 10cfv 5254 . . . . 5 class (⌊‘(𝑥 / 𝑦))
12 cmul 7877 . . . . 5 class ·
137, 11, 12co 5918 . . . 4 class (𝑦 · (⌊‘(𝑥 / 𝑦)))
14 cmin 8190 . . . 4 class
156, 13, 14co 5918 . . 3 class (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))
162, 3, 4, 5, 15cmpo 5920 . 2 class (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
171, 16wceq 1364 1 wff mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
Colors of variables: wff set class
This definition is referenced by:  modqval  10395
  Copyright terms: Public domain W3C validator