ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqval GIF version

Theorem modqval 9620
Description: The value of the modulo operation. The modulo congruence notation of number theory, 𝐽𝐾 (modulo 𝑁), can be expressed in our notation as (𝐽 mod 𝑁) = (𝐾 mod 𝑁). Definition 1 in Knuth, The Art of Computer Programming, Vol. I (1972), p. 38. Knuth uses "mod" for the operation and "modulo" for the congruence. Unlike Knuth, we restrict the second argument to positive numbers to simplify certain theorems. (This also gives us future flexibility to extend it to any one of several different conventions for a zero or negative second argument, should there be an advantage in doing so.) As with flqcl 9569 we only prove this for rationals although other particular kinds of real numbers may be possible. (Contributed by Jim Kingdon, 16-Oct-2021.)
Assertion
Ref Expression
modqval ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))

Proof of Theorem modqval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qre 9005 . . 3 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
213ad2ant1 960 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐴 ∈ ℝ)
3 qre 9005 . . . 4 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
433ad2ant2 961 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
5 simp3 941 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 < 𝐵)
64, 5elrpd 9066 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐵 ∈ ℝ+)
75gt0ne0d 7890 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
8 qdivcl 9023 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)
97, 8syld3an3 1215 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 / 𝐵) ∈ ℚ)
109flqcld 9573 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ)
1110zred 8764 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
124, 11remulcld 7421 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℝ)
132, 12resubcld 7762 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) ∈ ℝ)
14 oveq1 5598 . . . . . 6 (𝑥 = 𝐴 → (𝑥 / 𝑦) = (𝐴 / 𝑦))
1514fveq2d 5257 . . . . 5 (𝑥 = 𝐴 → (⌊‘(𝑥 / 𝑦)) = (⌊‘(𝐴 / 𝑦)))
1615oveq2d 5607 . . . 4 (𝑥 = 𝐴 → (𝑦 · (⌊‘(𝑥 / 𝑦))) = (𝑦 · (⌊‘(𝐴 / 𝑦))))
17 oveq12 5600 . . . 4 ((𝑥 = 𝐴 ∧ (𝑦 · (⌊‘(𝑥 / 𝑦))) = (𝑦 · (⌊‘(𝐴 / 𝑦)))) → (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))) = (𝐴 − (𝑦 · (⌊‘(𝐴 / 𝑦)))))
1816, 17mpdan 412 . . 3 (𝑥 = 𝐴 → (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))) = (𝐴 − (𝑦 · (⌊‘(𝐴 / 𝑦)))))
19 oveq2 5599 . . . . . 6 (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵))
2019fveq2d 5257 . . . . 5 (𝑦 = 𝐵 → (⌊‘(𝐴 / 𝑦)) = (⌊‘(𝐴 / 𝐵)))
21 oveq12 5600 . . . . 5 ((𝑦 = 𝐵 ∧ (⌊‘(𝐴 / 𝑦)) = (⌊‘(𝐴 / 𝐵))) → (𝑦 · (⌊‘(𝐴 / 𝑦))) = (𝐵 · (⌊‘(𝐴 / 𝐵))))
2220, 21mpdan 412 . . . 4 (𝑦 = 𝐵 → (𝑦 · (⌊‘(𝐴 / 𝑦))) = (𝐵 · (⌊‘(𝐴 / 𝐵))))
2322oveq2d 5607 . . 3 (𝑦 = 𝐵 → (𝐴 − (𝑦 · (⌊‘(𝐴 / 𝑦)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
24 df-mod 9619 . . 3 mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
2518, 23, 24ovmpt2g 5714 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) ∈ ℝ) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
262, 6, 13, 25syl3anc 1170 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 920   = wceq 1285  wcel 1434  wne 2249   class class class wbr 3811  cfv 4969  (class class class)co 5591  cr 7252  0cc0 7253   · cmul 7258   < clt 7425  cmin 7556   / cdiv 8037  cq 8999  +crp 9029  cfl 9564   mod cmo 9618
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366  ax-arch 7367
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4084  df-po 4087  df-iso 4088  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038  df-inn 8317  df-n0 8566  df-z 8647  df-q 9000  df-rp 9030  df-fl 9566  df-mod 9619
This theorem is referenced by:  modqvalr  9621  modqcl  9622  modq0  9625  modqge0  9628  modqlt  9629  modqdiffl  9631  modqfrac  9633  modqmulnn  9638  zmodcl  9640  modqid  9645  modqcyc  9655  modqadd1  9657  modqmul1  9673  modqdi  9688  modqsubdir  9689  iexpcyc  9895  dvdsmod  10643  divalgmod  10707  modgcd  10762
  Copyright terms: Public domain W3C validator