ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod Unicode version

Definition df-mod 10532
Description: Define the modulo (remainder) operation. See modqval 10533 for its value. For example,  ( 5  mod  3 )  =  2 and  ( -u 7  mod  2 )  =  1. As with df-fl 10477 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod  |-  mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10531 . 2  class  mod
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cr 7986 . . 3  class  RR
5 crp 9837 . . 3  class  RR+
62cv 1394 . . . 4  class  x
73cv 1394 . . . . 5  class  y
8 cdiv 8807 . . . . . . 7  class  /
96, 7, 8co 5994 . . . . . 6  class  ( x  /  y )
10 cfl 10475 . . . . . 6  class  |_
119, 10cfv 5314 . . . . 5  class  ( |_
`  ( x  / 
y ) )
12 cmul 7992 . . . . 5  class  x.
137, 11, 12co 5994 . . . 4  class  ( y  x.  ( |_ `  ( x  /  y
) ) )
14 cmin 8305 . . . 4  class  -
156, 13, 14co 5994 . . 3  class  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) )
162, 3, 4, 5, 15cmpo 5996 . 2  class  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
171, 16wceq 1395 1  wff  mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  modqval  10533
  Copyright terms: Public domain W3C validator