ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod Unicode version

Definition df-mod 10325
Description: Define the modulo (remainder) operation. See modqval 10326 for its value. For example,  ( 5  mod  3 )  =  2 and  ( -u 7  mod  2 )  =  1. As with df-fl 10272 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod  |-  mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10324 . 2  class  mod
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cr 7812 . . 3  class  RR
5 crp 9655 . . 3  class  RR+
62cv 1352 . . . 4  class  x
73cv 1352 . . . . 5  class  y
8 cdiv 8631 . . . . . . 7  class  /
96, 7, 8co 5877 . . . . . 6  class  ( x  /  y )
10 cfl 10270 . . . . . 6  class  |_
119, 10cfv 5218 . . . . 5  class  ( |_
`  ( x  / 
y ) )
12 cmul 7818 . . . . 5  class  x.
137, 11, 12co 5877 . . . 4  class  ( y  x.  ( |_ `  ( x  /  y
) ) )
14 cmin 8130 . . . 4  class  -
156, 13, 14co 5877 . . 3  class  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) )
162, 3, 4, 5, 15cmpo 5879 . 2  class  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
171, 16wceq 1353 1  wff  mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  modqval  10326
  Copyright terms: Public domain W3C validator