ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod Unicode version

Definition df-mod 10397
Description: Define the modulo (remainder) operation. See modqval 10398 for its value. For example,  ( 5  mod  3 )  =  2 and  ( -u 7  mod  2 )  =  1. As with df-fl 10342 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod  |-  mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10396 . 2  class  mod
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cr 7873 . . 3  class  RR
5 crp 9722 . . 3  class  RR+
62cv 1363 . . . 4  class  x
73cv 1363 . . . . 5  class  y
8 cdiv 8693 . . . . . . 7  class  /
96, 7, 8co 5919 . . . . . 6  class  ( x  /  y )
10 cfl 10340 . . . . . 6  class  |_
119, 10cfv 5255 . . . . 5  class  ( |_
`  ( x  / 
y ) )
12 cmul 7879 . . . . 5  class  x.
137, 11, 12co 5919 . . . 4  class  ( y  x.  ( |_ `  ( x  /  y
) ) )
14 cmin 8192 . . . 4  class  -
156, 13, 14co 5919 . . 3  class  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) )
162, 3, 4, 5, 15cmpo 5921 . 2  class  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
171, 16wceq 1364 1  wff  mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  modqval  10398
  Copyright terms: Public domain W3C validator