ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod Unicode version

Definition df-mod 10481
Description: Define the modulo (remainder) operation. See modqval 10482 for its value. For example,  ( 5  mod  3 )  =  2 and  ( -u 7  mod  2 )  =  1. As with df-fl 10426 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod  |-  mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10480 . 2  class  mod
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cr 7937 . . 3  class  RR
5 crp 9788 . . 3  class  RR+
62cv 1372 . . . 4  class  x
73cv 1372 . . . . 5  class  y
8 cdiv 8758 . . . . . . 7  class  /
96, 7, 8co 5954 . . . . . 6  class  ( x  /  y )
10 cfl 10424 . . . . . 6  class  |_
119, 10cfv 5277 . . . . 5  class  ( |_
`  ( x  / 
y ) )
12 cmul 7943 . . . . 5  class  x.
137, 11, 12co 5954 . . . 4  class  ( y  x.  ( |_ `  ( x  /  y
) ) )
14 cmin 8256 . . . 4  class  -
156, 13, 14co 5954 . . 3  class  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) )
162, 3, 4, 5, 15cmpo 5956 . 2  class  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
171, 16wceq 1373 1  wff  mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  modqval  10482
  Copyright terms: Public domain W3C validator