ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mod Unicode version

Definition df-mod 10254
Description: Define the modulo (remainder) operation. See modqval 10255 for its value. For example,  ( 5  mod  3 )  =  2 and  ( -u 7  mod  2 )  =  1. As with df-fl 10201 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
df-mod  |-  mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-mod
StepHypRef Expression
1 cmo 10253 . 2  class  mod
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cr 7748 . . 3  class  RR
5 crp 9585 . . 3  class  RR+
62cv 1342 . . . 4  class  x
73cv 1342 . . . . 5  class  y
8 cdiv 8564 . . . . . . 7  class  /
96, 7, 8co 5841 . . . . . 6  class  ( x  /  y )
10 cfl 10199 . . . . . 6  class  |_
119, 10cfv 5187 . . . . 5  class  ( |_
`  ( x  / 
y ) )
12 cmul 7754 . . . . 5  class  x.
137, 11, 12co 5841 . . . 4  class  ( y  x.  ( |_ `  ( x  /  y
) ) )
14 cmin 8065 . . . 4  class  -
156, 13, 14co 5841 . . 3  class  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) )
162, 3, 4, 5, 15cmpo 5843 . 2  class  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
171, 16wceq 1343 1  wff  mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  modqval  10255
  Copyright terms: Public domain W3C validator