Home | Intuitionistic Logic Explorer Theorem List (p. 104 of 141) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | zmodid2 10301 | Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0...(𝑁 − 1)))) | ||
Theorem | zmodidfzo 10302 | Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0..^𝑁))) | ||
Theorem | zmodidfzoimp 10303 | Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.) |
⊢ (𝑀 ∈ (0..^𝑁) → (𝑀 mod 𝑁) = 𝑀) | ||
Theorem | q0mod 10304 | Special case: 0 modulo a positive real number is 0. (Contributed by Jim Kingdon, 21-Oct-2021.) |
⊢ ((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (0 mod 𝑁) = 0) | ||
Theorem | q1mod 10305 | Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Jim Kingdon, 21-Oct-2021.) |
⊢ ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) | ||
Theorem | modqabs 10306 | Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 mod 𝐵) mod 𝐶) = (𝐴 mod 𝐵)) | ||
Theorem | modqabs2 10307 | Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) mod 𝐵) = (𝐴 mod 𝐵)) | ||
Theorem | modqcyc 10308 | The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.) |
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵)) | ||
Theorem | modqcyc2 10309 | The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.) |
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵)) | ||
Theorem | modqadd1 10310 | Addition property of the modulo operation. (Contributed by Jim Kingdon, 22-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 𝐶 ∈ ℚ) & ⊢ (𝜑 → 𝐷 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐷) & ⊢ (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) | ||
Theorem | modqaddabs 10311 | Absorption law for modulo. (Contributed by Jim Kingdon, 22-Oct-2021.) |
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶)) | ||
Theorem | modqaddmod 10312 | The sum of a number modulo a modulus and another number equals the sum of the two numbers modulo the same modulus. (Contributed by Jim Kingdon, 23-Oct-2021.) |
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) + 𝐵) mod 𝑀) = ((𝐴 + 𝐵) mod 𝑀)) | ||
Theorem | mulqaddmodid 10313 | The sum of a positive rational number less than an upper bound and the product of an integer and the upper bound is the positive rational number modulo the upper bound. (Contributed by Jim Kingdon, 23-Oct-2021.) |
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) | ||
Theorem | mulp1mod1 10314 | The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1) | ||
Theorem | modqmuladd 10315* | Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ (0[,)𝑀)) & ⊢ (𝜑 → 𝑀 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝑀) ⇒ ⊢ (𝜑 → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | ||
Theorem | modqmuladdim 10316* | Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | ||
Theorem | modqmuladdnn0 10317* | Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | ||
Theorem | qnegmod 10318 | The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁 − 𝐴) mod 𝑁)) | ||
Theorem | m1modnnsub1 10319 | Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.) |
⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) | ||
Theorem | m1modge3gt1 10320 | Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.) |
⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (-1 mod 𝑀)) | ||
Theorem | addmodid 10321 | The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴) | ||
Theorem | addmodidr 10322 | The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by AV, 19-Mar-2021.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝐴 + 𝑀) mod 𝑀) = 𝐴) | ||
Theorem | modqadd2mod 10323 | The sum of a number modulo a modulus and another number equals the sum of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.) |
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀)) | ||
Theorem | modqm1p1mod0 10324 | If a number modulo a modulus equals the modulus decreased by 1, the first number increased by 1 modulo the modulus equals 0. (Contributed by Jim Kingdon, 24-Oct-2021.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0)) | ||
Theorem | modqltm1p1mod 10325 | If a number modulo a modulus is less than the modulus decreased by 1, the first number increased by 1 modulo the modulus equals the first number modulo the modulus, increased by 1. (Contributed by Jim Kingdon, 24-Oct-2021.) |
⊢ (((𝐴 ∈ ℚ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1)) | ||
Theorem | modqmul1 10326 | Multiplication property of the modulo operation. Note that the multiplier 𝐶 must be an integer. (Contributed by Jim Kingdon, 24-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐷) & ⊢ (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)) | ||
Theorem | modqmul12d 10327 | Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Jim Kingdon, 24-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → 𝐸 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐸) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) | ||
Theorem | modqnegd 10328 | Negation property of the modulo operation. (Contributed by Jim Kingdon, 24-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 𝐶 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐶) & ⊢ (𝜑 → (𝐴 mod 𝐶) = (𝐵 mod 𝐶)) ⇒ ⊢ (𝜑 → (-𝐴 mod 𝐶) = (-𝐵 mod 𝐶)) | ||
Theorem | modqadd12d 10329 | Additive property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 𝐶 ∈ ℚ) & ⊢ (𝜑 → 𝐷 ∈ ℚ) & ⊢ (𝜑 → 𝐸 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐸) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸)) | ||
Theorem | modqsub12d 10330 | Subtraction property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → 𝐶 ∈ ℚ) & ⊢ (𝜑 → 𝐷 ∈ ℚ) & ⊢ (𝜑 → 𝐸 ∈ ℚ) & ⊢ (𝜑 → 0 < 𝐸) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐶) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) | ||
Theorem | modqsubmod 10331 | The difference of a number modulo a modulus and another number equals the difference of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.) |
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) − 𝐵) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) | ||
Theorem | modqsubmodmod 10332 | The difference of a number modulo a modulus and another number modulo the same modulus equals the difference of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.) |
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) − (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) | ||
Theorem | q2txmodxeq0 10333 | Two times a positive number modulo the number is zero. (Contributed by Jim Kingdon, 25-Oct-2021.) |
⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → ((2 · 𝑋) mod 𝑋) = 0) | ||
Theorem | q2submod 10334 | If a number is between a modulus and twice the modulus, the first number modulo the modulus equals the first number minus the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.) |
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) | ||
Theorem | modifeq2int 10335 | If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) | ||
Theorem | modaddmodup 10336 | The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀))) | ||
Theorem | modaddmodlo 10337 | The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀))) | ||
Theorem | modqmulmod 10338 | The product of a rational number modulo a modulus and an integer equals the product of the rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.) |
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) · 𝐵) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) | ||
Theorem | modqmulmodr 10339 | The product of an integer and a rational number modulo a modulus equals the product of the integer and the rational number modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 · (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) | ||
Theorem | modqaddmulmod 10340 | The sum of a rational number and the product of a second rational number modulo a modulus and an integer equals the sum of the rational number and the product of the other rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.) |
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀)) | ||
Theorem | modqdi 10341 | Distribute multiplication over a modulo operation. (Contributed by Jim Kingdon, 26-Oct-2021.) |
⊢ (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶))) | ||
Theorem | modqsubdir 10342 | Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.) |
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴 − 𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))) | ||
Theorem | modqeqmodmin 10343 | A rational number equals the difference of the rational number and a modulus modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 mod 𝑀) = ((𝐴 − 𝑀) mod 𝑀)) | ||
Theorem | modfzo0difsn 10344* | For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.) |
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)) | ||
Theorem | modsumfzodifsn 10345 | The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.) |
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) | ||
Theorem | modlteq 10346 | Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021.) |
⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐼 mod 𝑁) = (𝐽 mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
Theorem | addmodlteq 10347 | Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. (Contributed by AV, 20-Mar-2021.) |
⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
Theorem | frec2uz0d 10348* | The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers ℕ0 or 1 for the upper integers ℕ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → (𝐺‘∅) = 𝐶) | ||
Theorem | frec2uzzd 10349* | The value of 𝐺 (see frec2uz0d 10348) is an integer. (Contributed by Jim Kingdon, 16-May-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ ω) ⇒ ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) | ||
Theorem | frec2uzsucd 10350* | The value of 𝐺 (see frec2uz0d 10348) at a successor. (Contributed by Jim Kingdon, 16-May-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ ω) ⇒ ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) | ||
Theorem | frec2uzuzd 10351* | The value 𝐺 (see frec2uz0d 10348) at an ordinal natural number is in the upper integers. (Contributed by Jim Kingdon, 16-May-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ ω) ⇒ ⊢ (𝜑 → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) | ||
Theorem | frec2uzltd 10352* | Less-than relation for 𝐺 (see frec2uz0d 10348). (Contributed by Jim Kingdon, 16-May-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ ω) & ⊢ (𝜑 → 𝐵 ∈ ω) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) | ||
Theorem | frec2uzlt2d 10353* | The mapping 𝐺 (see frec2uz0d 10348) preserves order. (Contributed by Jim Kingdon, 16-May-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ ω) & ⊢ (𝜑 → 𝐵 ∈ ω) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) | ||
Theorem | frec2uzrand 10354* | Range of 𝐺 (see frec2uz0d 10348). (Contributed by Jim Kingdon, 17-May-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → ran 𝐺 = (ℤ≥‘𝐶)) | ||
Theorem | frec2uzf1od 10355* | 𝐺 (see frec2uz0d 10348) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) | ||
Theorem | frec2uzisod 10356* | 𝐺 (see frec2uz0d 10348) is an isomorphism from natural ordinals to upper integers. (Contributed by Jim Kingdon, 17-May-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) | ||
Theorem | frecuzrdgrrn 10357* | The function 𝑅 (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of 𝑆. (Contributed by Jim Kingdon, 28-Mar-2022.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ⇒ ⊢ ((𝜑 ∧ 𝐷 ∈ ω) → (𝑅‘𝐷) ∈ ((ℤ≥‘𝐶) × 𝑆)) | ||
Theorem | frec2uzrdg 10358* | A helper lemma for the value of a recursive definition generator on upper integers (typically either ℕ or ℕ0) with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. This lemma shows that evaluating 𝑅 at an element of ω gives an ordered pair whose first element is the index (translated from ω to (ℤ≥‘𝐶)). See comment in frec2uz0d 10348 which describes 𝐺 and the index translation. (Contributed by Jim Kingdon, 24-May-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝐵 ∈ ω) ⇒ ⊢ (𝜑 → (𝑅‘𝐵) = 〈(𝐺‘𝐵), (2nd ‘(𝑅‘𝐵))〉) | ||
Theorem | frecuzrdgrcl 10359* | The function 𝑅 (used in the definition of the recursive definition generator on upper integers) is a function defined for all natural numbers. (Contributed by Jim Kingdon, 1-Apr-2022.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ⇒ ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) | ||
Theorem | frecuzrdglem 10360* | A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘𝐶)) ⇒ ⊢ (𝜑 → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) | ||
Theorem | frecuzrdgtcl 10361* | The recursive definition generator on upper integers is a function. See comment in frec2uz0d 10348 for the description of 𝐺 as the mapping from ω to (ℤ≥‘𝐶). (Contributed by Jim Kingdon, 26-May-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑇 = ran 𝑅) ⇒ ⊢ (𝜑 → 𝑇:(ℤ≥‘𝐶)⟶𝑆) | ||
Theorem | frecuzrdg0 10362* | Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 10348 for the description of 𝐺 as the mapping from ω to (ℤ≥‘𝐶). (Contributed by Jim Kingdon, 27-May-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑇 = ran 𝑅) ⇒ ⊢ (𝜑 → (𝑇‘𝐶) = 𝐴) | ||
Theorem | frecuzrdgsuc 10363* | Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10348 for the description of 𝐺 as the mapping from ω to (ℤ≥‘𝐶). (Contributed by Jim Kingdon, 28-May-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑇 = ran 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑇‘(𝐵 + 1)) = (𝐵𝐹(𝑇‘𝐵))) | ||
Theorem | frecuzrdgrclt 10364* | The function 𝑅 (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of 𝑆. Similar to frecuzrdgrcl 10359 except that 𝑆 and 𝑇 need not be the same. (Contributed by Jim Kingdon, 22-Apr-2022.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ⇒ ⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) | ||
Theorem | frecuzrdgg 10365* | Lemma for other theorems involving the the recursive definition generator on upper integers. Evaluating 𝑅 at a natural number gives an ordered pair whose first element is the mapping of that natural number via 𝐺. (Contributed by Jim Kingdon, 23-Apr-2022.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → (1st ‘(𝑅‘𝑁)) = (𝐺‘𝑁)) | ||
Theorem | frecuzrdgdomlem 10366* | The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) | ||
Theorem | frecuzrdgdom 10367* | The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ⇒ ⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) | ||
Theorem | frecuzrdgfunlem 10368* | The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) ⇒ ⊢ (𝜑 → Fun ran 𝑅) | ||
Theorem | frecuzrdgfun 10369* | The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ⇒ ⊢ (𝜑 → Fun ran 𝑅) | ||
Theorem | frecuzrdgtclt 10370* | The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑃 = ran 𝑅) ⇒ ⊢ (𝜑 → 𝑃:(ℤ≥‘𝐶)⟶𝑆) | ||
Theorem | frecuzrdg0t 10371* | Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑃 = ran 𝑅) ⇒ ⊢ (𝜑 → (𝑃‘𝐶) = 𝐴) | ||
Theorem | frecuzrdgsuctlem 10372* | Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10348 for the description of 𝐺 as the mapping from ω to (ℤ≥‘𝐶). (Contributed by Jim Kingdon, 29-Apr-2022.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝑃 = ran 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃‘𝐵))) | ||
Theorem | frecuzrdgsuct 10373* | Successor value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 29-Apr-2022.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) & ⊢ (𝜑 → 𝑃 = ran 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃‘𝐵))) | ||
Theorem | uzenom 10374 | An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → 𝑍 ≈ ω) | ||
Theorem | frecfzennn 10375 | The cardinality of a finite set of sequential integers. (See frec2uz0d 10348 for a description of the hypothesis.) (Contributed by Jim Kingdon, 18-May-2020.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (◡𝐺‘𝑁)) | ||
Theorem | frecfzen2 10376 | The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Jim Kingdon, 18-May-2020.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) | ||
Theorem | frechashgf1o 10377 | 𝐺 maps ω one-to-one onto ℕ0. (Contributed by Jim Kingdon, 19-May-2020.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ 𝐺:ω–1-1-onto→ℕ0 | ||
Theorem | frec2uzled 10378* | The mapping 𝐺 (see frec2uz0d 10348) preserves order. (Contributed by Jim Kingdon, 24-Feb-2022.) |
⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) & ⊢ (𝜑 → 𝐴 ∈ ω) & ⊢ (𝜑 → 𝐵 ∈ ω) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐺‘𝐴) ≤ (𝐺‘𝐵))) | ||
Theorem | fzfig 10379 | A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ Fin) | ||
Theorem | fzfigd 10380 | Deduction form of fzfig 10379. (Contributed by Jim Kingdon, 21-May-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | ||
Theorem | fzofig 10381 | Half-open integer sets are finite. (Contributed by Jim Kingdon, 21-May-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) | ||
Theorem | nn0ennn 10382 | The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.) |
⊢ ℕ0 ≈ ℕ | ||
Theorem | nnenom 10383 | The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of natural numbers as ordinals). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ ℕ ≈ ω | ||
Theorem | nnct 10384 | ℕ is dominated by ω. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
⊢ ℕ ≼ ω | ||
Theorem | uzennn 10385 | An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.) |
⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ≈ ℕ) | ||
Theorem | fnn0nninf 10386* | A function from ℕ0 into ℕ∞. (Contributed by Jim Kingdon, 16-Jul-2022.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ⇒ ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ | ||
Theorem | fxnn0nninf 10387* | A function from ℕ0* into ℕ∞. (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7098 instead of infnninfOLD 7099. More generally, this theorem and most theorems in this section could use an extended 𝐺 defined by 𝐺 = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ 〈ω, +∞〉) and 𝐹 = (𝑛 ∈ suc ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) as in nnnninf2 7101. |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) & ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) ⇒ ⊢ 𝐼:ℕ0*⟶ℕ∞ | ||
Theorem | 0tonninf 10388* | The mapping of zero into ℕ∞ is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) & ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) ⇒ ⊢ (𝐼‘0) = (𝑥 ∈ ω ↦ ∅) | ||
Theorem | 1tonninf 10389* | The mapping of one into ℕ∞ is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) & ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) ⇒ ⊢ (𝐼‘1) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, 1o, ∅)) | ||
Theorem | inftonninf 10390* | The mapping of +∞ into ℕ∞ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) & ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) ⇒ ⊢ (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o) | ||
Theorem | uzsinds 10391* | Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ (ℤ≥‘𝑀) → (∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜒) | ||
Theorem | nnsinds 10392* | Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ (1...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ ℕ → 𝜒) | ||
Theorem | nn0sinds 10393* | Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ℕ0 → (∀𝑦 ∈ (0...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝜒) | ||
Syntax | cseq 10394 | Extend class notation with recursive sequence builder. |
class seq𝑀( + , 𝐹) | ||
Definition | df-seqfrec 10395* |
Define a general-purpose operation that builds a recursive sequence
(i.e., a function on an upper integer set such as ℕ or ℕ0)
whose value at an index is a function of its previous value and the
value of an input sequence at that index. This definition is
complicated, but fortunately it is not intended to be used directly.
Instead, the only purpose of this definition is to provide us with an
object that has the properties expressed by seqf 10410, seq3-1 10409 and
seq3p1 10411. Typically, those are the main theorems
that would be used in
practice.
The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation +, an input sequence 𝐹 with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence seq1( + , 𝐹) with values 1, 3/2, 7/4, 15/8,.., so that (seq1( + , 𝐹)‘1) = 1, (seq1( + , 𝐹)‘2) = 3/2, etc. In other words, seq𝑀( + , 𝐹) transforms a sequence 𝐹 into an infinite series. seq𝑀( + , 𝐹) ⇝ 2 means "the sum of F(n) from n = M to infinity is 2". Since limits are unique (climuni 11249), by climdm 11251 the "sum of F(n) from n = 1 to infinity" can be expressed as ( ⇝ ‘seq1( + , 𝐹)) (provided the sequence converges) and evaluates to 2 in this example. Internally, the frec function generates as its values a set of ordered pairs starting at 〈𝑀, (𝐹‘𝑀)〉, with the first member of each pair incremented by one in each successive value. So, the range of frec is exactly the sequence we want, and we just extract the range and throw away the domain. (Contributed by NM, 18-Apr-2005.) (Revised by Jim Kingdon, 4-Nov-2022.) |
⊢ seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | ||
Theorem | seqex 10396 | Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ seq𝑀( + , 𝐹) ∈ V | ||
Theorem | seqeq1 10397 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) | ||
Theorem | seqeq2 10398 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ ( + = 𝑄 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) | ||
Theorem | seqeq3 10399 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) | ||
Theorem | seqeq1d 10400 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |