| Intuitionistic Logic Explorer Theorem List (p. 104 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | elfzomin 10301 | Membership of an integer in the smallest open range of integers. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
| ⊢ (𝑍 ∈ ℤ → 𝑍 ∈ (𝑍..^(𝑍 + 1))) | ||
| Theorem | zpnn0elfzo 10302 | Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
| ⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (𝑍..^((𝑍 + 𝑁) + 1))) | ||
| Theorem | zpnn0elfzo1 10303 | Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
| ⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (𝑍..^(𝑍 + (𝑁 + 1)))) | ||
| Theorem | fzosplitsnm1 10304 | Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) | ||
| Theorem | elfzonlteqm1 10305 | If an element of a half-open integer range is not less than the upper bound of the range decreased by 1, it must be equal to the upper bound of the range decreased by 1. (Contributed by AV, 3-Nov-2018.) |
| ⊢ ((𝐴 ∈ (0..^𝐵) ∧ ¬ 𝐴 < (𝐵 − 1)) → 𝐴 = (𝐵 − 1)) | ||
| Theorem | fzonn0p1 10306 | A nonnegative integer is element of the half-open range of nonnegative integers with the element increased by one as an upper bound. (Contributed by Alexander van der Vekens, 5-Aug-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0..^(𝑁 + 1))) | ||
| Theorem | fzossfzop1 10307 | A half-open range of nonnegative integers is a subset of a half-open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1))) | ||
| Theorem | fzonn0p1p1 10308 | If a nonnegative integer is element of a half-open range of nonnegative integers, increasing this integer by one results in an element of a half- open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.) |
| ⊢ (𝐼 ∈ (0..^𝑁) → (𝐼 + 1) ∈ (0..^(𝑁 + 1))) | ||
| Theorem | elfzom1p1elfzo 10309 | Increasing an element of a half-open range of nonnegative integers by 1 results in an element of the half-open range of nonnegative integers with an upper bound increased by 1. (Contributed by Alexander van der Vekens, 1-Aug-2018.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (0..^(𝑁 − 1))) → (𝑋 + 1) ∈ (0..^𝑁)) | ||
| Theorem | fzo0ssnn0 10310 | Half-open integer ranges starting with 0 are subsets of NN0. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
| ⊢ (0..^𝑁) ⊆ ℕ0 | ||
| Theorem | fzo01 10311 | Expressing the singleton of 0 as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (0..^1) = {0} | ||
| Theorem | fzo12sn 10312 | A 1-based half-open integer interval up to, but not including, 2 is a singleton. (Contributed by Alexander van der Vekens, 31-Jan-2018.) |
| ⊢ (1..^2) = {1} | ||
| Theorem | fzo0to2pr 10313 | A half-open integer range from 0 to 2 is an unordered pair. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
| ⊢ (0..^2) = {0, 1} | ||
| Theorem | fzo0to3tp 10314 | A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.) |
| ⊢ (0..^3) = {0, 1, 2} | ||
| Theorem | fzo0to42pr 10315 | A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.) |
| ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) | ||
| Theorem | fzo0sn0fzo1 10316 | A half-open range of nonnegative integers is the union of the singleton set containing 0 and a half-open range of positive integers. (Contributed by Alexander van der Vekens, 18-May-2018.) |
| ⊢ (𝑁 ∈ ℕ → (0..^𝑁) = ({0} ∪ (1..^𝑁))) | ||
| Theorem | fzoend 10317 | The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵)) | ||
| Theorem | fzo0end 10318 | The endpoint of a zero-based half-open range. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐵 ∈ ℕ → (𝐵 − 1) ∈ (0..^𝐵)) | ||
| Theorem | ssfzo12 10319 | Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 16-Mar-2018.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) | ||
| Theorem | ssfzo12bi 10320 | Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) | ||
| Theorem | ubmelm1fzo 10321 | The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
| ⊢ (𝐾 ∈ (0..^𝑁) → ((𝑁 − 𝐾) − 1) ∈ (0..^𝑁)) | ||
| Theorem | fzofzp1 10322 | If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵)) | ||
| Theorem | fzofzp1b 10323 | If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ (𝐶 ∈ (ℤ≥‘𝐴) → (𝐶 ∈ (𝐴..^𝐵) ↔ (𝐶 + 1) ∈ (𝐴...𝐵))) | ||
| Theorem | elfzom1b 10324 | An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ (𝐾 − 1) ∈ (0..^(𝑁 − 1)))) | ||
| Theorem | elfzonelfzo 10325 | If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
| ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅))) | ||
| Theorem | elfzomelpfzo 10326 | An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀 − 𝐿)..^(𝑁 − 𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁))) | ||
| Theorem | peano2fzor 10327 | A Peano-postulate-like theorem for downward closure of a half-open integer range. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝐾 + 1) ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑀..^𝑁)) | ||
| Theorem | fzosplitsn 10328 | Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵})) | ||
| Theorem | fzosplitprm1 10329 | Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵})) | ||
| Theorem | fzosplitsni 10330 | Membership in a half-open range extended by a singleton. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐶 ∈ (𝐴..^(𝐵 + 1)) ↔ (𝐶 ∈ (𝐴..^𝐵) ∨ 𝐶 = 𝐵))) | ||
| Theorem | fzisfzounsn 10331 | A finite interval of integers as union of a half-open integer range and a singleton. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) = ((𝐴..^𝐵) ∪ {𝐵})) | ||
| Theorem | fzostep1 10332 | Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)) | ||
| Theorem | fzoshftral 10333* | Shift the scanning order inside of a quantification over a half-open integer range, analogous to fzshftral 10202. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀..^𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)..^(𝑁 + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑)) | ||
| Theorem | fzind2 10334* | Induction on the integers from 𝑀 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 9460 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.) |
| ⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜓) & ⊢ (𝑦 ∈ (𝑀..^𝑁) → (𝜒 → 𝜃)) ⇒ ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝜏) | ||
| Theorem | exfzdc 10335* | Decidability of the existence of an integer defined by a decidable proposition. (Contributed by Jim Kingdon, 28-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → DECID 𝜓) ⇒ ⊢ (𝜑 → DECID ∃𝑛 ∈ (𝑀...𝑁)𝜓) | ||
| Theorem | fvinim0ffz 10336 | The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.) |
| ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))))) | ||
| Theorem | subfzo0 10337 | The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.) |
| ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼 − 𝐽) ∧ (𝐼 − 𝐽) < 𝑁)) | ||
| Theorem | zsupcllemstep 10338* | Lemma for zsupcl 10340. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.) |
| ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) ⇒ ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ≥‘𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ≥‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))) | ||
| Theorem | zsupcllemex 10339* | Lemma for zsupcl 10340. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) & ⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) | ||
| Theorem | zsupcl 10340* | Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at 𝑀 (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after 𝑀, and (c) be false after 𝑗 (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) & ⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝜓) ⇒ ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀)) | ||
| Theorem | zssinfcl 10341* | The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.) |
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐵 ⊆ ℤ) & ⊢ (𝜑 → inf(𝐵, ℝ, < ) ∈ ℤ) ⇒ ⊢ (𝜑 → inf(𝐵, ℝ, < ) ∈ 𝐵) | ||
| Theorem | infssuzex 10342* | Existence of the infimum of a subset of an upper set of integers. (Contributed by Jim Kingdon, 13-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) | ||
| Theorem | infssuzledc 10343* | The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by Jim Kingdon, 13-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) ⇒ ⊢ (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴) | ||
| Theorem | infssuzcldc 10344* | The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) ⇒ ⊢ (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆) | ||
| Theorem | suprzubdc 10345* | The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℤ) & ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | nninfdcex 10346* | A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑦 𝑦 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
| Theorem | zsupssdc 10347* | An inhabited decidable bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-suploc 8019.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℤ) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | suprzcl2dc 10348* | The supremum of a bounded-above decidable set of integers is a member of the set. (This theorem avoids ax-pre-suploc 8019.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 6-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℤ) & ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴) | ||
| Theorem | qtri3or 10349 | Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.) |
| ⊢ ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) | ||
| Theorem | qletric 10350 | Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | ||
| Theorem | qlelttric 10351 | Rational trichotomy. (Contributed by Jim Kingdon, 7-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) | ||
| Theorem | qltnle 10352 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | ||
| Theorem | qdceq 10353 | Equality of rationals is decidable. (Contributed by Jim Kingdon, 11-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 = 𝐵) | ||
| Theorem | qdclt 10354 | Rational < is decidable. (Contributed by Jim Kingdon, 7-Aug-2025.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 < 𝐵) | ||
| Theorem | qdcle 10355 | Rational ≤ is decidable. (Contributed by Jim Kingdon, 28-Oct-2025.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 ≤ 𝐵) | ||
| Theorem | exbtwnzlemstep 10356* | Lemma for exbtwnzlemex 10358. Induction step. (Contributed by Jim Kingdon, 10-May-2022.) |
| ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) ⇒ ⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐾))) | ||
| Theorem | exbtwnzlemshrink 10357* | Lemma for exbtwnzlemex 10358. Shrinking the range around 𝐴. (Contributed by Jim Kingdon, 10-May-2022.) |
| ⊢ (𝜑 → 𝐽 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) ⇒ ⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
| Theorem | exbtwnzlemex 10358* |
Existence of an integer so that a given real number is between the
integer and its successor. The real number must satisfy the
𝑛
≤ 𝐴 ∨ 𝐴 < 𝑛 hypothesis. For example either a
rational number or
a number which is irrational (in the sense of being apart from any
rational number) will meet this condition.
The proof starts by finding two integers which are less than and greater than 𝐴. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on the 𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛 hypothesis, and iterating until the range consists of two consecutive integers. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
| Theorem | exbtwnz 10359* | If a real number is between an integer and its successor, there is a unique greatest integer less than or equal to the real number. (Contributed by Jim Kingdon, 10-May-2022.) |
| ⊢ (𝜑 → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
| Theorem | qbtwnz 10360* | There is a unique greatest integer less than or equal to a rational number. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
| Theorem | rebtwn2zlemstep 10361* | Lemma for rebtwn2z 10363. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.) |
| ⊢ ((𝐾 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝐾))) | ||
| Theorem | rebtwn2zlemshrink 10362* | Lemma for rebtwn2z 10363. Shrinking the range around the given real number. (Contributed by Jim Kingdon, 13-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ≥‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) | ||
| Theorem | rebtwn2z 10363* |
A real number can be bounded by integers above and below which are two
apart.
The proof starts by finding two integers which are less than and greater than the given real number. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on weak linearity, and iterating until the range consists of integers which are two apart. (Contributed by Jim Kingdon, 13-Oct-2021.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) | ||
| Theorem | qbtwnrelemcalc 10364 | Lemma for qbtwnre 10365. Calculations involved in showing the constructed rational number is less than 𝐵. (Contributed by Jim Kingdon, 14-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑀 < (𝐴 · (2 · 𝑁))) & ⊢ (𝜑 → (1 / 𝑁) < (𝐵 − 𝐴)) ⇒ ⊢ (𝜑 → ((𝑀 + 2) / (2 · 𝑁)) < 𝐵) | ||
| Theorem | qbtwnre 10365* | The rational numbers are dense in ℝ: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | ||
| Theorem | qbtwnxr 10366* | The rational numbers are dense in ℝ*: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | ||
| Theorem | qavgle 10367 | The average of two rational numbers is less than or equal to at least one of them. (Contributed by Jim Kingdon, 3-Nov-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (((𝐴 + 𝐵) / 2) ≤ 𝐴 ∨ ((𝐴 + 𝐵) / 2) ≤ 𝐵)) | ||
| Theorem | ioo0 10368 | An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | ||
| Theorem | ioom 10369* | An open interval of extended reals is inhabited iff the lower argument is less than the upper argument. (Contributed by Jim Kingdon, 27-Nov-2021.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 < 𝐵)) | ||
| Theorem | ico0 10370 | An empty open interval of extended reals. (Contributed by FL, 30-May-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | ||
| Theorem | ioc0 10371 | An empty open interval of extended reals. (Contributed by FL, 30-May-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | ||
| Theorem | dfrp2 10372 | Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.) |
| ⊢ ℝ+ = (0(,)+∞) | ||
| Theorem | elicod 10373 | Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐶 < 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) | ||
| Theorem | icogelb 10374 | An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴 ≤ 𝐶) | ||
| Theorem | elicore 10375 | A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ) | ||
| Theorem | xqltnle 10376 | "Less than" expressed in terms of "less than or equal to", for extended numbers which are rational or +∞. We have not yet had enough usage of such numbers to warrant fully developing the concept, as in ℕ0* or ℝ*, so for now we just have a handful of theorems for what we need. (Contributed by Jim Kingdon, 5-Jun-2025.) |
| ⊢ (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | ||
| Syntax | cfl 10377 | Extend class notation with floor (greatest integer) function. |
| class ⌊ | ||
| Syntax | cceil 10378 | Extend class notation to include the ceiling function. |
| class ⌈ | ||
| Definition | df-fl 10379* |
Define the floor (greatest integer less than or equal to) function. See
flval 10381 for its value, flqlelt 10385 for its basic property, and flqcl 10382 for
its closure. For example, (⌊‘(3 / 2)) =
1 while
(⌊‘-(3 / 2)) = -2 (ex-fl 15457).
Although we define this on real numbers so that notations are similar to the Metamath Proof Explorer, in the absence of excluded middle few theorems will be possible for all real numbers. Imagine a real number which is around 2.99995 or 3.00001 . In order to determine whether its floor is 2 or 3, it would be necessary to compute the number to arbitrary precision. The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.) |
| ⊢ ⌊ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℤ (𝑦 ≤ 𝑥 ∧ 𝑥 < (𝑦 + 1)))) | ||
| Definition | df-ceil 10380 |
The ceiling (least integer greater than or equal to) function. Defined in
ISO 80000-2:2009(E) operation 2-9.18 and the "NIST Digital Library of
Mathematical Functions" , front introduction, "Common Notations
and
Definitions" section at http://dlmf.nist.gov/front/introduction#Sx4.
See ceilqval 10417 for its value, ceilqge 10421 and ceilqm1lt 10423 for its basic
properties, and ceilqcl 10419 for its closure. For example,
(⌈‘(3 / 2)) = 2 while (⌈‘-(3 / 2)) = -1
(ex-ceil 15458).
As described in df-fl 10379 most theorems are only for rationals, not reals. The symbol ⌈ is inspired by the gamma shaped left bracket of the usual notation. (Contributed by David A. Wheeler, 19-May-2015.) |
| ⊢ ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥)) | ||
| Theorem | flval 10381* | Value of the floor (greatest integer) function. The floor of 𝐴 is the (unique) integer less than or equal to 𝐴 whose successor is strictly greater than 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
| ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) | ||
| Theorem | flqcl 10382 | The floor (greatest integer) function yields an integer when applied to a rational (closure law). For a similar closure law for real numbers apart from any integer, see flapcl 10384. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | ||
| Theorem | apbtwnz 10383* | There is a unique greatest integer less than or equal to a real number which is apart from all integers. (Contributed by Jim Kingdon, 11-May-2022.) |
| ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
| Theorem | flapcl 10384* | The floor (greatest integer) function yields an integer when applied to a real number apart from any integer. For example, an irrational number (see for example sqrt2irrap 12375) would satisfy this condition. (Contributed by Jim Kingdon, 11-May-2022.) |
| ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → (⌊‘𝐴) ∈ ℤ) | ||
| Theorem | flqlelt 10385 | A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | ||
| Theorem | flqcld 10386 | The floor (greatest integer) function is an integer (closure law). (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → (⌊‘𝐴) ∈ ℤ) | ||
| Theorem | flqle 10387 | A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴) | ||
| Theorem | flqltp1 10388 | A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → 𝐴 < ((⌊‘𝐴) + 1)) | ||
| Theorem | qfraclt1 10389 | The fractional part of a rational number is less than one. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → (𝐴 − (⌊‘𝐴)) < 1) | ||
| Theorem | qfracge0 10390 | The fractional part of a rational number is nonnegative. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → 0 ≤ (𝐴 − (⌊‘𝐴))) | ||
| Theorem | flqge 10391 | The floor function value is the greatest integer less than or equal to its argument. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ (⌊‘𝐴))) | ||
| Theorem | flqlt 10392 | The floor function value is less than the next integer. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (⌊‘𝐴) < 𝐵)) | ||
| Theorem | flid 10393 | An integer is its own floor. (Contributed by NM, 15-Nov-2004.) |
| ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴) | ||
| Theorem | flqidm 10394 | The floor function is idempotent. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → (⌊‘(⌊‘𝐴)) = (⌊‘𝐴)) | ||
| Theorem | flqidz 10395 | A rational number equals its floor iff it is an integer. (Contributed by Jim Kingdon, 9-Oct-2021.) |
| ⊢ (𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐴 ↔ 𝐴 ∈ ℤ)) | ||
| Theorem | flqltnz 10396 | If A is not an integer, then the floor of A is less than A. (Contributed by Jim Kingdon, 9-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴) | ||
| Theorem | flqwordi 10397 | Ordering relationship for the greatest integer function. (Contributed by Jim Kingdon, 9-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐴 ≤ 𝐵) → (⌊‘𝐴) ≤ (⌊‘𝐵)) | ||
| Theorem | flqword2 10398 | Ordering relationship for the greatest integer function. (Contributed by Jim Kingdon, 9-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐴 ≤ 𝐵) → (⌊‘𝐵) ∈ (ℤ≥‘(⌊‘𝐴))) | ||
| Theorem | flqbi 10399 | A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)))) | ||
| Theorem | flqbi2 10400 | A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹 ∧ 𝐹 < 1))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |