| Intuitionistic Logic Explorer Theorem List (p. 104 of 161) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fzonnsub2 10301 | If 𝑀 < 𝑁 then 𝑁 − 𝑀 is a positive integer. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑁 − 𝑀) ∈ ℕ) | ||
| Theorem | fzoss1 10302 | Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) | ||
| Theorem | fzoss2 10303 | Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁)) | ||
| Theorem | fzossrbm1 10304 | Subset of a half open range. (Contributed by Alexander van der Vekens, 1-Nov-2017.) |
| ⊢ (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) | ||
| Theorem | fzo0ss1 10305 | Subset relationship for half-open integer ranges with lower bounds 0 and 1. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| ⊢ (1..^𝑁) ⊆ (0..^𝑁) | ||
| Theorem | fzossnn0 10306 | A half-open integer range starting at a nonnegative integer is a subset of the nonnegative integers. (Contributed by Alexander van der Vekens, 13-May-2018.) |
| ⊢ (𝑀 ∈ ℕ0 → (𝑀..^𝑁) ⊆ ℕ0) | ||
| Theorem | fzospliti 10307 | One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶))) | ||
| Theorem | fzosplit 10308 | Split a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝐷 ∈ (𝐵...𝐶) → (𝐵..^𝐶) = ((𝐵..^𝐷) ∪ (𝐷..^𝐶))) | ||
| Theorem | fzodisj 10309 | Abutting half-open integer ranges are disjoint. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ ((𝐴..^𝐵) ∩ (𝐵..^𝐶)) = ∅ | ||
| Theorem | fzouzsplit 10310 | Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) = ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) | ||
| Theorem | fzouzdisj 10311 | A half-open integer range does not overlap the upper integer range starting at the endpoint of the first range. (Contributed by Mario Carneiro, 21-Sep-2016.) |
| ⊢ ((𝐴..^𝐵) ∩ (ℤ≥‘𝐵)) = ∅ | ||
| Theorem | lbfzo0 10312 | An integer is strictly greater than zero iff it is a member of ℕ. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) | ||
| Theorem | elfzo0 10313 | Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) | ||
| Theorem | fzo1fzo0n0 10314 | An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.) |
| ⊢ (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0)) | ||
| Theorem | elfzo0z 10315 | Membership in a half-open range of nonnegative integers, generalization of elfzo0 10313 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) | ||
| Theorem | elfzo0le 10316 | A member in a half-open range of nonnegative integers is less than or equal to the upper bound of the range. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ≤ 𝐵) | ||
| Theorem | elfzonn0 10317 | A member of a half-open range of nonnegative integers is a nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
| ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0) | ||
| Theorem | fzonmapblen 10318 | The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less then the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.) |
| ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) | ||
| Theorem | fzofzim 10319 | If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
| ⊢ ((𝐾 ≠ 𝑀 ∧ 𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀)) | ||
| Theorem | fzossnn 10320 | Half-open integer ranges starting with 1 are subsets of ℕ. (Contributed by Thierry Arnoux, 28-Dec-2016.) |
| ⊢ (1..^𝑁) ⊆ ℕ | ||
| Theorem | elfzo1 10321 | Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
| ⊢ (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀)) | ||
| Theorem | fzo0m 10322* | A half-open integer range based at 0 is inhabited precisely if the upper bound is a positive integer. (Contributed by Jim Kingdon, 20-Apr-2020.) |
| ⊢ (∃𝑥 𝑥 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) | ||
| Theorem | fzoaddel 10323 | Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)..^(𝐶 + 𝐷))) | ||
| Theorem | fzo0addel 10324 | Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020.) |
| ⊢ ((𝐴 ∈ (0..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ (𝐷..^(𝐶 + 𝐷))) | ||
| Theorem | fzo0addelr 10325 | Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020.) |
| ⊢ ((𝐴 ∈ (0..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ (𝐷..^(𝐷 + 𝐶))) | ||
| Theorem | fzoaddel2 10326 | Translate membership in a shifted-down half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (0..^(𝐵 − 𝐶)) ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 + 𝐶) ∈ (𝐶..^𝐵)) | ||
| Theorem | elfzoextl 10327 | Membership of an integer in an extended open range of integers, extension added to the left. (Contributed by AV, 31-Aug-2025.) Generalized by replacing the left border of the ranges. (Revised by SN, 18-Sep-2025.) |
| ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝐼 + 𝑁))) | ||
| Theorem | elfzoext 10328 | Membership of an integer in an extended open range of integers, extension added to the right. (Contributed by AV, 30-Apr-2020.) (Proof shortened by AV, 23-Sep-2025.) |
| ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼))) | ||
| Theorem | elincfzoext 10329 | Membership of an increased integer in a correspondingly extended half-open range of integers. (Contributed by AV, 30-Apr-2020.) |
| ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼))) | ||
| Theorem | fzosubel 10330 | Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 − 𝐷) ∈ ((𝐵 − 𝐷)..^(𝐶 − 𝐷))) | ||
| Theorem | fzosubel2 10331 | Membership in a translated half-open integer range implies translated membership in the original range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ ((𝐵 + 𝐶)..^(𝐵 + 𝐷)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 − 𝐵) ∈ (𝐶..^𝐷)) | ||
| Theorem | fzosubel3 10332 | Membership in a translated half-open integer range when the original range is zero-based. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → (𝐴 − 𝐵) ∈ (0..^𝐷)) | ||
| Theorem | eluzgtdifelfzo 10333 | Membership of the difference of integers in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ≥‘𝐴) ∧ 𝐵 < 𝐴) → (𝑁 − 𝐴) ∈ (0..^(𝑁 − 𝐵)))) | ||
| Theorem | ige2m2fzo 10334 | Membership of an integer greater than 1 decreased by 2 in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 2) ∈ (0..^(𝑁 − 1))) | ||
| Theorem | fzocatel 10335 | Translate membership in a half-open integer range. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
| ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 − 𝐵) ∈ (0..^𝐶)) | ||
| Theorem | ubmelfzo 10336 | If an integer in a 1 based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
| ⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − 𝐾) ∈ (0..^𝑁)) | ||
| Theorem | elfzodifsumelfzo 10337 | If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in the a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018.) |
| ⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁 − 𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))) | ||
| Theorem | elfzom1elp1fzo 10338 | Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁)) | ||
| Theorem | elfzom1elfzo 10339 | Membership in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0..^𝑁)) | ||
| Theorem | fzval3 10340 | Expressing a closed integer range as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (𝑁 ∈ ℤ → (𝑀...𝑁) = (𝑀..^(𝑁 + 1))) | ||
| Theorem | fzosn 10341 | Expressing a singleton as a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐴 ∈ ℤ → (𝐴..^(𝐴 + 1)) = {𝐴}) | ||
| Theorem | elfzomin 10342 | Membership of an integer in the smallest open range of integers. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
| ⊢ (𝑍 ∈ ℤ → 𝑍 ∈ (𝑍..^(𝑍 + 1))) | ||
| Theorem | zpnn0elfzo 10343 | Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
| ⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (𝑍..^((𝑍 + 𝑁) + 1))) | ||
| Theorem | zpnn0elfzo1 10344 | Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
| ⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (𝑍..^(𝑍 + (𝑁 + 1)))) | ||
| Theorem | fzosplitsnm1 10345 | Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) | ||
| Theorem | elfzonlteqm1 10346 | If an element of a half-open integer range is not less than the upper bound of the range decreased by 1, it must be equal to the upper bound of the range decreased by 1. (Contributed by AV, 3-Nov-2018.) |
| ⊢ ((𝐴 ∈ (0..^𝐵) ∧ ¬ 𝐴 < (𝐵 − 1)) → 𝐴 = (𝐵 − 1)) | ||
| Theorem | fzonn0p1 10347 | A nonnegative integer is element of the half-open range of nonnegative integers with the element increased by one as an upper bound. (Contributed by Alexander van der Vekens, 5-Aug-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0..^(𝑁 + 1))) | ||
| Theorem | fzossfzop1 10348 | A half-open range of nonnegative integers is a subset of a half-open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1))) | ||
| Theorem | fzonn0p1p1 10349 | If a nonnegative integer is element of a half-open range of nonnegative integers, increasing this integer by one results in an element of a half- open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.) |
| ⊢ (𝐼 ∈ (0..^𝑁) → (𝐼 + 1) ∈ (0..^(𝑁 + 1))) | ||
| Theorem | elfzom1p1elfzo 10350 | Increasing an element of a half-open range of nonnegative integers by 1 results in an element of the half-open range of nonnegative integers with an upper bound increased by 1. (Contributed by Alexander van der Vekens, 1-Aug-2018.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (0..^(𝑁 − 1))) → (𝑋 + 1) ∈ (0..^𝑁)) | ||
| Theorem | fzo0ssnn0 10351 | Half-open integer ranges starting with 0 are subsets of NN0. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
| ⊢ (0..^𝑁) ⊆ ℕ0 | ||
| Theorem | fzo01 10352 | Expressing the singleton of 0 as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (0..^1) = {0} | ||
| Theorem | fzo12sn 10353 | A 1-based half-open integer interval up to, but not including, 2 is a singleton. (Contributed by Alexander van der Vekens, 31-Jan-2018.) |
| ⊢ (1..^2) = {1} | ||
| Theorem | fzo0to2pr 10354 | A half-open integer range from 0 to 2 is an unordered pair. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
| ⊢ (0..^2) = {0, 1} | ||
| Theorem | fzo0to3tp 10355 | A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.) |
| ⊢ (0..^3) = {0, 1, 2} | ||
| Theorem | fzo0to42pr 10356 | A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.) |
| ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) | ||
| Theorem | fzo0sn0fzo1 10357 | A half-open range of nonnegative integers is the union of the singleton set containing 0 and a half-open range of positive integers. (Contributed by Alexander van der Vekens, 18-May-2018.) |
| ⊢ (𝑁 ∈ ℕ → (0..^𝑁) = ({0} ∪ (1..^𝑁))) | ||
| Theorem | fzoend 10358 | The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵)) | ||
| Theorem | fzo0end 10359 | The endpoint of a zero-based half-open range. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐵 ∈ ℕ → (𝐵 − 1) ∈ (0..^𝐵)) | ||
| Theorem | ssfzo12 10360 | Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 16-Mar-2018.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) | ||
| Theorem | ssfzo12bi 10361 | Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) | ||
| Theorem | ubmelm1fzo 10362 | The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
| ⊢ (𝐾 ∈ (0..^𝑁) → ((𝑁 − 𝐾) − 1) ∈ (0..^𝑁)) | ||
| Theorem | fzofzp1 10363 | If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵)) | ||
| Theorem | fzofzp1b 10364 | If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ (𝐶 ∈ (ℤ≥‘𝐴) → (𝐶 ∈ (𝐴..^𝐵) ↔ (𝐶 + 1) ∈ (𝐴...𝐵))) | ||
| Theorem | elfzom1b 10365 | An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ (𝐾 − 1) ∈ (0..^(𝑁 − 1)))) | ||
| Theorem | elfzonelfzo 10366 | If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
| ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅))) | ||
| Theorem | elfzomelpfzo 10367 | An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀 − 𝐿)..^(𝑁 − 𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁))) | ||
| Theorem | peano2fzor 10368 | A Peano-postulate-like theorem for downward closure of a half-open integer range. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝐾 + 1) ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑀..^𝑁)) | ||
| Theorem | fzosplitsn 10369 | Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵})) | ||
| Theorem | fzosplitprm1 10370 | Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵})) | ||
| Theorem | fzosplitsni 10371 | Membership in a half-open range extended by a singleton. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐶 ∈ (𝐴..^(𝐵 + 1)) ↔ (𝐶 ∈ (𝐴..^𝐵) ∨ 𝐶 = 𝐵))) | ||
| Theorem | fzisfzounsn 10372 | A finite interval of integers as union of a half-open integer range and a singleton. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) = ((𝐴..^𝐵) ∪ {𝐵})) | ||
| Theorem | fzostep1 10373 | Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)) | ||
| Theorem | fzoshftral 10374* | Shift the scanning order inside of a quantification over a half-open integer range, analogous to fzshftral 10237. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀..^𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)..^(𝑁 + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑)) | ||
| Theorem | fzind2 10375* | Induction on the integers from 𝑀 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 9495 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.) |
| ⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜓) & ⊢ (𝑦 ∈ (𝑀..^𝑁) → (𝜒 → 𝜃)) ⇒ ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝜏) | ||
| Theorem | exfzdc 10376* | Decidability of the existence of an integer defined by a decidable proposition. (Contributed by Jim Kingdon, 28-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → DECID 𝜓) ⇒ ⊢ (𝜑 → DECID ∃𝑛 ∈ (𝑀...𝑁)𝜓) | ||
| Theorem | fvinim0ffz 10377 | The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.) |
| ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))))) | ||
| Theorem | subfzo0 10378 | The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.) |
| ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼 − 𝐽) ∧ (𝐼 − 𝐽) < 𝑁)) | ||
| Theorem | zsupcllemstep 10379* | Lemma for zsupcl 10381. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.) |
| ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) ⇒ ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ≥‘𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ≥‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))) | ||
| Theorem | zsupcllemex 10380* | Lemma for zsupcl 10381. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) & ⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) | ||
| Theorem | zsupcl 10381* | Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at 𝑀 (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after 𝑀, and (c) be false after 𝑗 (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) & ⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝜓) ⇒ ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀)) | ||
| Theorem | zssinfcl 10382* | The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.) |
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐵 ⊆ ℤ) & ⊢ (𝜑 → inf(𝐵, ℝ, < ) ∈ ℤ) ⇒ ⊢ (𝜑 → inf(𝐵, ℝ, < ) ∈ 𝐵) | ||
| Theorem | infssuzex 10383* | Existence of the infimum of a subset of an upper set of integers. (Contributed by Jim Kingdon, 13-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) | ||
| Theorem | infssuzledc 10384* | The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by Jim Kingdon, 13-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) ⇒ ⊢ (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴) | ||
| Theorem | infssuzcldc 10385* | The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) ⇒ ⊢ (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆) | ||
| Theorem | suprzubdc 10386* | The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℤ) & ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | nninfdcex 10387* | A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑦 𝑦 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
| Theorem | zsupssdc 10388* | An inhabited decidable bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-suploc 8053.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℤ) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | suprzcl2dc 10389* | The supremum of a bounded-above decidable set of integers is a member of the set. (This theorem avoids ax-pre-suploc 8053.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 6-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℤ) & ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴) | ||
| Theorem | qtri3or 10390 | Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.) |
| ⊢ ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) | ||
| Theorem | qletric 10391 | Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | ||
| Theorem | qlelttric 10392 | Rational trichotomy. (Contributed by Jim Kingdon, 7-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) | ||
| Theorem | qltnle 10393 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | ||
| Theorem | qdceq 10394 | Equality of rationals is decidable. (Contributed by Jim Kingdon, 11-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 = 𝐵) | ||
| Theorem | qdclt 10395 | Rational < is decidable. (Contributed by Jim Kingdon, 7-Aug-2025.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 < 𝐵) | ||
| Theorem | qdcle 10396 | Rational ≤ is decidable. (Contributed by Jim Kingdon, 28-Oct-2025.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 ≤ 𝐵) | ||
| Theorem | exbtwnzlemstep 10397* | Lemma for exbtwnzlemex 10399. Induction step. (Contributed by Jim Kingdon, 10-May-2022.) |
| ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) ⇒ ⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐾))) | ||
| Theorem | exbtwnzlemshrink 10398* | Lemma for exbtwnzlemex 10399. Shrinking the range around 𝐴. (Contributed by Jim Kingdon, 10-May-2022.) |
| ⊢ (𝜑 → 𝐽 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) ⇒ ⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
| Theorem | exbtwnzlemex 10399* |
Existence of an integer so that a given real number is between the
integer and its successor. The real number must satisfy the
𝑛
≤ 𝐴 ∨ 𝐴 < 𝑛 hypothesis. For example either a
rational number or
a number which is irrational (in the sense of being apart from any
rational number) will meet this condition.
The proof starts by finding two integers which are less than and greater than 𝐴. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on the 𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛 hypothesis, and iterating until the range consists of two consecutive integers. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
| Theorem | exbtwnz 10400* | If a real number is between an integer and its successor, there is a unique greatest integer less than or equal to the real number. (Contributed by Jim Kingdon, 10-May-2022.) |
| ⊢ (𝜑 → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |