| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > isxms2 | GIF version | ||
| Description: Express the predicate "〈𝑋, 𝐷〉 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) | 
| isms.x | ⊢ 𝑋 = (Base‘𝐾) | 
| isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | 
| Ref | Expression | 
|---|---|
| isxms2 | ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isms.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 2 | isms.x | . . 3 ⊢ 𝑋 = (Base‘𝐾) | |
| 3 | isms.d | . . 3 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
| 4 | 1, 2, 3 | isxms 14687 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) | 
| 5 | 2, 1 | istps 14268 | . . . 4 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) | 
| 6 | df-mopn 14103 | . . . . . . . . . 10 ⊢ MetOpen = (𝑥 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑥))) | |
| 7 | 6 | dmmptss 5166 | . . . . . . . . 9 ⊢ dom MetOpen ⊆ ∪ ran ∞Met | 
| 8 | mopnrel 14677 | . . . . . . . . . 10 ⊢ Rel MetOpen | |
| 9 | toponmax 14261 | . . . . . . . . . . . 12 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 10 | 9 | adantl 277 | . . . . . . . . . . 11 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 ∈ 𝐽) | 
| 11 | simpl 109 | . . . . . . . . . . 11 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐽 = (MetOpen‘𝐷)) | |
| 12 | 10, 11 | eleqtrd 2275 | . . . . . . . . . 10 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 ∈ (MetOpen‘𝐷)) | 
| 13 | relelfvdm 5590 | . . . . . . . . . 10 ⊢ ((Rel MetOpen ∧ 𝑋 ∈ (MetOpen‘𝐷)) → 𝐷 ∈ dom MetOpen) | |
| 14 | 8, 12, 13 | sylancr 414 | . . . . . . . . 9 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ dom MetOpen) | 
| 15 | 7, 14 | sselid 3181 | . . . . . . . 8 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ ∪ ran ∞Met) | 
| 16 | xmetunirn 14594 | . . . . . . . 8 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) | |
| 17 | 15, 16 | sylib 122 | . . . . . . 7 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) | 
| 18 | eqid 2196 | . . . . . . . . . . . . 13 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 19 | 18 | mopntopon 14679 | . . . . . . . . . . . 12 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (MetOpen‘𝐷) ∈ (TopOn‘dom dom 𝐷)) | 
| 20 | 17, 19 | syl 14 | . . . . . . . . . . 11 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (MetOpen‘𝐷) ∈ (TopOn‘dom dom 𝐷)) | 
| 21 | 11, 20 | eqeltrd 2273 | . . . . . . . . . 10 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘dom dom 𝐷)) | 
| 22 | toponuni 14251 | . . . . . . . . . 10 ⊢ (𝐽 ∈ (TopOn‘dom dom 𝐷) → dom dom 𝐷 = ∪ 𝐽) | |
| 23 | 21, 22 | syl 14 | . . . . . . . . 9 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → dom dom 𝐷 = ∪ 𝐽) | 
| 24 | toponuni 14251 | . . . . . . . . . 10 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 25 | 24 | adantl 277 | . . . . . . . . 9 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 = ∪ 𝐽) | 
| 26 | 23, 25 | eqtr4d 2232 | . . . . . . . 8 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → dom dom 𝐷 = 𝑋) | 
| 27 | 26 | fveq2d 5562 | . . . . . . 7 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∞Met‘dom dom 𝐷) = (∞Met‘𝑋)) | 
| 28 | 17, 27 | eleqtrd 2275 | . . . . . 6 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ (∞Met‘𝑋)) | 
| 29 | 28 | ex 115 | . . . . 5 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))) | 
| 30 | 18 | mopntopon 14679 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) ∈ (TopOn‘𝑋)) | 
| 31 | eleq1 2259 | . . . . . 6 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) ↔ (MetOpen‘𝐷) ∈ (TopOn‘𝑋))) | |
| 32 | 30, 31 | imbitrrid 156 | . . . . 5 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))) | 
| 33 | 29, 32 | impbid 129 | . . . 4 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐷 ∈ (∞Met‘𝑋))) | 
| 34 | 5, 33 | bitrid 192 | . . 3 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐾 ∈ TopSp ↔ 𝐷 ∈ (∞Met‘𝑋))) | 
| 35 | 34 | pm5.32ri 455 | . 2 ⊢ ((𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) | 
| 36 | 4, 35 | bitri 184 | 1 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∪ cuni 3839 × cxp 4661 dom cdm 4663 ran crn 4664 ↾ cres 4665 Rel wrel 4668 ‘cfv 5258 Basecbs 12678 distcds 12764 TopOpenctopn 12911 topGenctg 12925 ∞Metcxmet 14092 ballcbl 14094 MetOpencmopn 14097 TopOnctopon 14246 TopSpctps 14266 ∞MetSpcxms 14572 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-ndx 12681 df-slot 12682 df-base 12684 df-tset 12774 df-rest 12912 df-topn 12913 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-topsp 14267 df-bases 14279 df-xms 14575 | 
| This theorem is referenced by: isms2 14690 xmsxmet 14696 | 
| Copyright terms: Public domain | W3C validator |