ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isxms2 GIF version

Theorem isxms2 12380
Description: Express the predicate "𝑋, 𝐷 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
isms.j 𝐽 = (TopOpen‘𝐾)
isms.x 𝑋 = (Base‘𝐾)
isms.d 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
isxms2 (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)))

Proof of Theorem isxms2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isms.j . . 3 𝐽 = (TopOpen‘𝐾)
2 isms.x . . 3 𝑋 = (Base‘𝐾)
3 isms.d . . 3 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
41, 2, 3isxms 12379 . 2 (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)))
52, 1istps 11981 . . . 4 (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
6 df-mopn 11942 . . . . . . . . . 10 MetOpen = (𝑥 ran ∞Met ↦ (topGen‘ran (ball‘𝑥)))
76dmmptss 4971 . . . . . . . . 9 dom MetOpen ⊆ ran ∞Met
8 mopnrel 12369 . . . . . . . . . 10 Rel MetOpen
9 toponmax 11974 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
109adantl 273 . . . . . . . . . . 11 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋𝐽)
11 simpl 108 . . . . . . . . . . 11 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐽 = (MetOpen‘𝐷))
1210, 11eleqtrd 2178 . . . . . . . . . 10 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 ∈ (MetOpen‘𝐷))
13 relelfvdm 5385 . . . . . . . . . 10 ((Rel MetOpen ∧ 𝑋 ∈ (MetOpen‘𝐷)) → 𝐷 ∈ dom MetOpen)
148, 12, 13sylancr 408 . . . . . . . . 9 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ dom MetOpen)
157, 14sseldi 3045 . . . . . . . 8 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ran ∞Met)
16 xmetunirn 12286 . . . . . . . 8 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
1715, 16sylib 121 . . . . . . 7 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
18 eqid 2100 . . . . . . . . . . . . 13 (MetOpen‘𝐷) = (MetOpen‘𝐷)
1918mopntopon 12371 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘dom dom 𝐷) → (MetOpen‘𝐷) ∈ (TopOn‘dom dom 𝐷))
2017, 19syl 14 . . . . . . . . . . 11 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (MetOpen‘𝐷) ∈ (TopOn‘dom dom 𝐷))
2111, 20eqeltrd 2176 . . . . . . . . . 10 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘dom dom 𝐷))
22 toponuni 11964 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘dom dom 𝐷) → dom dom 𝐷 = 𝐽)
2321, 22syl 14 . . . . . . . . 9 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → dom dom 𝐷 = 𝐽)
24 toponuni 11964 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2524adantl 273 . . . . . . . . 9 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 = 𝐽)
2623, 25eqtr4d 2135 . . . . . . . 8 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → dom dom 𝐷 = 𝑋)
2726fveq2d 5357 . . . . . . 7 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∞Met‘dom dom 𝐷) = (∞Met‘𝑋))
2817, 27eleqtrd 2178 . . . . . 6 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
2928ex 114 . . . . 5 (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)))
3018mopntopon 12371 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) ∈ (TopOn‘𝑋))
31 eleq1 2162 . . . . . 6 (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) ↔ (MetOpen‘𝐷) ∈ (TopOn‘𝑋)))
3230, 31syl5ibr 155 . . . . 5 (𝐽 = (MetOpen‘𝐷) → (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)))
3329, 32impbid 128 . . . 4 (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐷 ∈ (∞Met‘𝑋)))
345, 33syl5bb 191 . . 3 (𝐽 = (MetOpen‘𝐷) → (𝐾 ∈ TopSp ↔ 𝐷 ∈ (∞Met‘𝑋)))
3534pm5.32ri 446 . 2 ((𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)))
364, 35bitri 183 1 (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1299  wcel 1448   cuni 3683   × cxp 4475  dom cdm 4477  ran crn 4478  cres 4479  Rel wrel 4482  cfv 5059  Basecbs 11741  distcds 11812  TopOpenctopn 11903  topGenctg 11917  ∞Metcxmet 11931  ballcbl 11933  MetOpencmopn 11936  TopOnctopon 11959  TopSpctps 11979  ∞MetSpcxms 12264
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-isom 5068  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-map 6474  df-sup 6786  df-inf 6787  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-5 8640  df-6 8641  df-7 8642  df-8 8643  df-9 8644  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-xneg 9400  df-xadd 9401  df-seqfrec 10060  df-exp 10134  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-ndx 11744  df-slot 11745  df-base 11747  df-tset 11822  df-rest 11904  df-topn 11905  df-topgen 11923  df-psmet 11938  df-xmet 11939  df-bl 11941  df-mopn 11942  df-top 11947  df-topon 11960  df-topsp 11980  df-bases 11992  df-xms 12267
This theorem is referenced by:  isms2  12382  xmsxmet  12388
  Copyright terms: Public domain W3C validator