ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopnrel GIF version

Theorem mopnrel 14677
Description: The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.)
Assertion
Ref Expression
mopnrel Rel MetOpen

Proof of Theorem mopnrel
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 mptrel 4794 . 2 Rel (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
2 df-mopn 14103 . . 3 MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
32releqi 4746 . 2 (Rel MetOpen ↔ Rel (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑))))
41, 3mpbir 146 1 Rel MetOpen
Colors of variables: wff set class
Syntax hints:   cuni 3839  cmpt 4094  ran crn 4664  Rel wrel 4668  cfv 5258  topGenctg 12925  ∞Metcxmet 14092  ballcbl 14094  MetOpencmopn 14097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-mpt 4096  df-xp 4669  df-rel 4670  df-mopn 14103
This theorem is referenced by:  isxms2  14688
  Copyright terms: Public domain W3C validator