ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopnrel GIF version

Theorem mopnrel 15080
Description: The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.)
Assertion
Ref Expression
mopnrel Rel MetOpen

Proof of Theorem mopnrel
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 mptrel 4827 . 2 Rel (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
2 df-mopn 14476 . . 3 MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
32releqi 4779 . 2 (Rel MetOpen ↔ Rel (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑))))
41, 3mpbir 146 1 Rel MetOpen
Colors of variables: wff set class
Syntax hints:   cuni 3867  cmpt 4124  ran crn 4697  Rel wrel 4701  cfv 5294  topGenctg 13253  ∞Metcxmet 14465  ballcbl 14467  MetOpencmopn 14470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-opab 4125  df-mpt 4126  df-xp 4702  df-rel 4703  df-mopn 14476
This theorem is referenced by:  isxms2  15091
  Copyright terms: Public domain W3C validator