| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mopnrel | GIF version | ||
| Description: The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.) |
| Ref | Expression |
|---|---|
| mopnrel | ⊢ Rel MetOpen |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4827 | . 2 ⊢ Rel (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) | |
| 2 | df-mopn 14476 | . . 3 ⊢ MetOpen = (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) | |
| 3 | 2 | releqi 4779 | . 2 ⊢ (Rel MetOpen ↔ Rel (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ Rel MetOpen |
| Colors of variables: wff set class |
| Syntax hints: ∪ cuni 3867 ↦ cmpt 4124 ran crn 4697 Rel wrel 4701 ‘cfv 5294 topGenctg 13253 ∞Metcxmet 14465 ballcbl 14467 MetOpencmopn 14470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-opab 4125 df-mpt 4126 df-xp 4702 df-rel 4703 df-mopn 14476 |
| This theorem is referenced by: isxms2 15091 |
| Copyright terms: Public domain | W3C validator |