Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mopnrel | GIF version |
Description: The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.) |
Ref | Expression |
---|---|
mopnrel | ⊢ Rel MetOpen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptrel 4707 | . 2 ⊢ Rel (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) | |
2 | df-mopn 12330 | . . 3 ⊢ MetOpen = (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) | |
3 | 2 | releqi 4662 | . 2 ⊢ (Rel MetOpen ↔ Rel (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))) |
4 | 1, 3 | mpbir 145 | 1 ⊢ Rel MetOpen |
Colors of variables: wff set class |
Syntax hints: ∪ cuni 3768 ↦ cmpt 4021 ran crn 4580 Rel wrel 4584 ‘cfv 5163 topGenctg 12305 ∞Metcxmet 12319 ballcbl 12321 MetOpencmopn 12324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-opab 4022 df-mpt 4023 df-xp 4585 df-rel 4586 df-mopn 12330 |
This theorem is referenced by: isxms2 12791 |
Copyright terms: Public domain | W3C validator |