ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopnrel GIF version

Theorem mopnrel 14620
Description: The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.)
Assertion
Ref Expression
mopnrel Rel MetOpen

Proof of Theorem mopnrel
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 mptrel 4791 . 2 Rel (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
2 df-mopn 14046 . . 3 MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
32releqi 4743 . 2 (Rel MetOpen ↔ Rel (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑))))
41, 3mpbir 146 1 Rel MetOpen
Colors of variables: wff set class
Syntax hints:   cuni 3836  cmpt 4091  ran crn 4661  Rel wrel 4665  cfv 5255  topGenctg 12868  ∞Metcxmet 14035  ballcbl 14037  MetOpencmopn 14040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-opab 4092  df-mpt 4093  df-xp 4666  df-rel 4667  df-mopn 14046
This theorem is referenced by:  isxms2  14631
  Copyright terms: Public domain W3C validator