ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopnrel GIF version

Theorem mopnrel 14957
Description: The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.)
Assertion
Ref Expression
mopnrel Rel MetOpen

Proof of Theorem mopnrel
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 mptrel 4810 . 2 Rel (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
2 df-mopn 14353 . . 3 MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
32releqi 4762 . 2 (Rel MetOpen ↔ Rel (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑))))
41, 3mpbir 146 1 Rel MetOpen
Colors of variables: wff set class
Syntax hints:   cuni 3852  cmpt 4109  ran crn 4680  Rel wrel 4684  cfv 5276  topGenctg 13130  ∞Metcxmet 14342  ballcbl 14344  MetOpencmopn 14347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-opab 4110  df-mpt 4111  df-xp 4685  df-rel 4686  df-mopn 14353
This theorem is referenced by:  isxms2  14968
  Copyright terms: Public domain W3C validator