Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isomni | GIF version |
Description: The predicate of being omniscient. (Contributed by Jim Kingdon, 28-Jun-2022.) |
Ref | Expression |
---|---|
isomni | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 5321 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑓:𝑦⟶2o ↔ 𝑓:𝐴⟶2o)) | |
2 | rexeq 2662 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) | |
3 | raleq 2661 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | |
4 | 2, 3 | orbi12d 783 | . . . 4 ⊢ (𝑦 = 𝐴 → ((∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o) ↔ (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
5 | 1, 4 | imbi12d 233 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)) ↔ (𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)))) |
6 | 5 | albidv 1812 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)) ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)))) |
7 | df-omni 7099 | . 2 ⊢ Omni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o))} | |
8 | 6, 7 | elab2g 2873 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 698 ∀wal 1341 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 ∅c0 3409 ⟶wf 5184 ‘cfv 5188 1oc1o 6377 2oc2o 6378 Omnicomni 7098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-fn 5191 df-f 5192 df-omni 7099 |
This theorem is referenced by: isomnimap 7101 finomni 7104 exmidomniim 7105 exmidomni 7106 omnimkv 7120 omniwomnimkv 7131 |
Copyright terms: Public domain | W3C validator |