ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isomni GIF version

Theorem isomni 7100
Description: The predicate of being omniscient. (Contributed by Jim Kingdon, 28-Jun-2022.)
Assertion
Ref Expression
isomni (𝐴𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))))
Distinct variable group:   𝐴,𝑓,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑓)

Proof of Theorem isomni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 feq2 5321 . . . 4 (𝑦 = 𝐴 → (𝑓:𝑦⟶2o𝑓:𝐴⟶2o))
2 rexeq 2662 . . . . 5 (𝑦 = 𝐴 → (∃𝑥𝑦 (𝑓𝑥) = ∅ ↔ ∃𝑥𝐴 (𝑓𝑥) = ∅))
3 raleq 2661 . . . . 5 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝑓𝑥) = 1o ↔ ∀𝑥𝐴 (𝑓𝑥) = 1o))
42, 3orbi12d 783 . . . 4 (𝑦 = 𝐴 → ((∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o) ↔ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)))
51, 4imbi12d 233 . . 3 (𝑦 = 𝐴 → ((𝑓:𝑦⟶2o → (∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o)) ↔ (𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))))
65albidv 1812 . 2 (𝑦 = 𝐴 → (∀𝑓(𝑓:𝑦⟶2o → (∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o)) ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))))
7 df-omni 7099 . 2 Omni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o))}
86, 7elab2g 2873 1 (𝐴𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 698  wal 1341   = wceq 1343  wcel 2136  wral 2444  wrex 2445  c0 3409  wf 5184  cfv 5188  1oc1o 6377  2oc2o 6378  Omnicomni 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-fn 5191  df-f 5192  df-omni 7099
This theorem is referenced by:  isomnimap  7101  finomni  7104  exmidomniim  7105  exmidomni  7106  omnimkv  7120  omniwomnimkv  7131
  Copyright terms: Public domain W3C validator