![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isomni | GIF version |
Description: The predicate of being omniscient. (Contributed by Jim Kingdon, 28-Jun-2022.) |
Ref | Expression |
---|---|
isomni | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 5387 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑓:𝑦⟶2o ↔ 𝑓:𝐴⟶2o)) | |
2 | rexeq 2691 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) | |
3 | raleq 2690 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | |
4 | 2, 3 | orbi12d 794 | . . . 4 ⊢ (𝑦 = 𝐴 → ((∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o) ↔ (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
5 | 1, 4 | imbi12d 234 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)) ↔ (𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)))) |
6 | 5 | albidv 1835 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)) ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)))) |
7 | df-omni 7194 | . 2 ⊢ Omni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o))} | |
8 | 6, 7 | elab2g 2907 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 ∀wal 1362 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ∅c0 3446 ⟶wf 5250 ‘cfv 5254 1oc1o 6462 2oc2o 6463 Omnicomni 7193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-fn 5257 df-f 5258 df-omni 7194 |
This theorem is referenced by: isomnimap 7196 finomni 7199 exmidomniim 7200 exmidomni 7201 omnimkv 7215 omniwomnimkv 7226 nninfctlemfo 12177 |
Copyright terms: Public domain | W3C validator |