Detailed syntax breakdown of Definition df-pc
Step | Hyp | Ref
| Expression |
1 | | cpc 12238 |
. 2
class
pCnt |
2 | | vp |
. . 3
setvar 𝑝 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cprime 12061 |
. . 3
class
ℙ |
5 | | cq 9578 |
. . 3
class
ℚ |
6 | 3 | cv 1347 |
. . . . 5
class 𝑟 |
7 | | cc0 7774 |
. . . . 5
class
0 |
8 | 6, 7 | wceq 1348 |
. . . 4
wff 𝑟 = 0 |
9 | | cpnf 7951 |
. . . 4
class
+∞ |
10 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
11 | 10 | cv 1347 |
. . . . . . . . . 10
class 𝑥 |
12 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
13 | 12 | cv 1347 |
. . . . . . . . . 10
class 𝑦 |
14 | | cdiv 8589 |
. . . . . . . . . 10
class
/ |
15 | 11, 13, 14 | co 5853 |
. . . . . . . . 9
class (𝑥 / 𝑦) |
16 | 6, 15 | wceq 1348 |
. . . . . . . 8
wff 𝑟 = (𝑥 / 𝑦) |
17 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
18 | 17 | cv 1347 |
. . . . . . . . 9
class 𝑧 |
19 | 2 | cv 1347 |
. . . . . . . . . . . . . 14
class 𝑝 |
20 | | vn |
. . . . . . . . . . . . . . 15
setvar 𝑛 |
21 | 20 | cv 1347 |
. . . . . . . . . . . . . 14
class 𝑛 |
22 | | cexp 10475 |
. . . . . . . . . . . . . 14
class
↑ |
23 | 19, 21, 22 | co 5853 |
. . . . . . . . . . . . 13
class (𝑝↑𝑛) |
24 | | cdvds 11749 |
. . . . . . . . . . . . 13
class
∥ |
25 | 23, 11, 24 | wbr 3989 |
. . . . . . . . . . . 12
wff (𝑝↑𝑛) ∥ 𝑥 |
26 | | cn0 9135 |
. . . . . . . . . . . 12
class
ℕ0 |
27 | 25, 20, 26 | crab 2452 |
. . . . . . . . . . 11
class {𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑥} |
28 | | cr 7773 |
. . . . . . . . . . 11
class
ℝ |
29 | | clt 7954 |
. . . . . . . . . . 11
class
< |
30 | 27, 28, 29 | csup 6959 |
. . . . . . . . . 10
class
sup({𝑛 ∈
ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) |
31 | 23, 13, 24 | wbr 3989 |
. . . . . . . . . . . 12
wff (𝑝↑𝑛) ∥ 𝑦 |
32 | 31, 20, 26 | crab 2452 |
. . . . . . . . . . 11
class {𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦} |
33 | 32, 28, 29 | csup 6959 |
. . . . . . . . . 10
class
sup({𝑛 ∈
ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ) |
34 | | cmin 8090 |
. . . . . . . . . 10
class
− |
35 | 30, 33, 34 | co 5853 |
. . . . . . . . 9
class
(sup({𝑛 ∈
ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )) |
36 | 18, 35 | wceq 1348 |
. . . . . . . 8
wff 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )) |
37 | 16, 36 | wa 103 |
. . . . . . 7
wff (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))) |
38 | | cn 8878 |
. . . . . . 7
class
ℕ |
39 | 37, 12, 38 | wrex 2449 |
. . . . . 6
wff
∃𝑦 ∈
ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))) |
40 | | cz 9212 |
. . . . . 6
class
ℤ |
41 | 39, 10, 40 | wrex 2449 |
. . . . 5
wff
∃𝑥 ∈
ℤ ∃𝑦 ∈
ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))) |
42 | 41, 17 | cio 5158 |
. . . 4
class
(℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))) |
43 | 8, 9, 42 | cif 3526 |
. . 3
class if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))))) |
44 | 2, 3, 4, 5, 43 | cmpo 5855 |
. 2
class (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) |
45 | 1, 44 | wceq 1348 |
1
wff pCnt =
(𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) |