![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pc0 | GIF version |
Description: The value of the prime power function at zero. (Contributed by Mario Carneiro, 3-Oct-2014.) |
Ref | Expression |
---|---|
pc0 | ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9295 | . . 3 ⊢ 0 ∈ ℤ | |
2 | zq 9658 | . . 3 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 0 ∈ ℚ |
4 | iftrue 3554 | . . . 4 ⊢ (𝑟 = 0 → if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))))) = +∞) | |
5 | 4 | adantl 277 | . . 3 ⊢ ((𝑝 = 𝑃 ∧ 𝑟 = 0) → if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))))) = +∞) |
6 | df-pc 12320 | . . 3 ⊢ pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) | |
7 | pnfex 8042 | . . 3 ⊢ +∞ ∈ V | |
8 | 5, 6, 7 | ovmpoa 6028 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 0 ∈ ℚ) → (𝑃 pCnt 0) = +∞) |
9 | 3, 8 | mpan2 425 | 1 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ∃wrex 2469 {crab 2472 ifcif 3549 class class class wbr 4018 ℩cio 5194 (class class class)co 5897 supcsup 7012 ℝcr 7841 0cc0 7842 +∞cpnf 8020 < clt 8023 − cmin 8159 / cdiv 8660 ℕcn 8950 ℕ0cn0 9207 ℤcz 9284 ℚcq 9651 ↑cexp 10553 ∥ cdvds 11829 ℙcprime 12142 pCnt cpc 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-po 4314 df-iso 4315 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-z 9285 df-q 9652 df-pc 12320 |
This theorem is referenced by: pcxnn0cl 12345 pcxcl 12346 pcxqcl 12347 pcge0 12348 pcdvdsb 12355 pcgcd1 12363 pc2dvds 12365 pcaddlem 12374 pcadd 12375 |
Copyright terms: Public domain | W3C validator |