ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pc0 GIF version

Theorem pc0 12500
Description: The value of the prime power function at zero. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pc0 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)

Proof of Theorem pc0
Dummy variables 𝑥 𝑦 𝑛 𝑝 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 9356 . . 3 0 ∈ ℤ
2 zq 9719 . . 3 (0 ∈ ℤ → 0 ∈ ℚ)
31, 2ax-mp 5 . 2 0 ∈ ℚ
4 iftrue 3567 . . . 4 (𝑟 = 0 → if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))) = +∞)
54adantl 277 . . 3 ((𝑝 = 𝑃𝑟 = 0) → if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))) = +∞)
6 df-pc 12481 . . 3 pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))))
7 pnfex 8099 . . 3 +∞ ∈ V
85, 6, 7ovmpoa 6057 . 2 ((𝑃 ∈ ℙ ∧ 0 ∈ ℚ) → (𝑃 pCnt 0) = +∞)
93, 8mpan2 425 1 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wrex 2476  {crab 2479  ifcif 3562   class class class wbr 4034  cio 5218  (class class class)co 5925  supcsup 7057  cr 7897  0cc0 7898  +∞cpnf 8077   < clt 8080  cmin 8216   / cdiv 8718  cn 9009  0cn0 9268  cz 9345  cq 9712  cexp 10649  cdvds 11971  cprime 12302   pCnt cpc 12480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-z 9346  df-q 9713  df-pc 12481
This theorem is referenced by:  pcxnn0cl  12506  pcxcl  12507  pcxqcl  12508  pcge0  12509  pcdvdsb  12516  pcgcd1  12524  pc2dvds  12526  pcaddlem  12535  pcadd  12536
  Copyright terms: Public domain W3C validator