| Intuitionistic Logic Explorer Theorem List (p. 123 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | recoscld 12201 | Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℝ) | ||
| Theorem | retanclapd 12202 | Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (cos‘𝐴) # 0) ⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℝ) | ||
| Theorem | sinneg 12203 | The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | ||
| Theorem | cosneg 12204 | The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) | ||
| Theorem | tannegap 12205 | The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘-𝐴) = -(tan‘𝐴)) | ||
| Theorem | sin0 12206 | Value of the sine function at 0. (Contributed by Steve Rodriguez, 14-Mar-2005.) |
| ⊢ (sin‘0) = 0 | ||
| Theorem | cos0 12207 | Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (cos‘0) = 1 | ||
| Theorem | tan0 12208 | The value of the tangent function at zero is zero. (Contributed by David A. Wheeler, 16-Mar-2014.) |
| ⊢ (tan‘0) = 0 | ||
| Theorem | efival 12209 | The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) | ||
| Theorem | efmival 12210 | The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴)))) | ||
| Theorem | efeul 12211 | Eulerian representation of the complex exponential. (Suggested by Jeff Hankins, 3-Jul-2006.) (Contributed by NM, 4-Jul-2006.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((exp‘(ℜ‘𝐴)) · ((cos‘(ℑ‘𝐴)) + (i · (sin‘(ℑ‘𝐴)))))) | ||
| Theorem | efieq 12212 | The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵)))) | ||
| Theorem | sinadd 12213 | Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | cosadd 12214 | Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | tanaddaplem 12215 | A useful intermediate step in tanaddap 12216 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) (Revised by Jim Kingdon, 25-Dec-2022.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘(𝐴 + 𝐵)) # 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) # 1)) | ||
| Theorem | tanaddap 12216 | Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0 ∧ (cos‘(𝐴 + 𝐵)) # 0)) → (tan‘(𝐴 + 𝐵)) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵))))) | ||
| Theorem | sinsub 12217 | Sine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 − 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | cossub 12218 | Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 − 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | addsin 12219 | Sum of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) + (sin‘𝐵)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | subsin 12220 | Difference of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) − (sin‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | sinmul 12221 | Product of sines can be rewritten as half the difference of certain cosines. This follows from cosadd 12214 and cossub 12218. (Contributed by David A. Wheeler, 26-May-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2)) | ||
| Theorem | cosmul 12222 | Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd 12214 and cossub 12218. (Contributed by David A. Wheeler, 26-May-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) = (((cos‘(𝐴 − 𝐵)) + (cos‘(𝐴 + 𝐵))) / 2)) | ||
| Theorem | addcos 12223 | Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) + (cos‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | subcos 12224 | Difference of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) (Revised by Mario Carneiro, 10-May-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) − (cos‘𝐴)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | sincossq 12225 | Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | ||
| Theorem | sin2t 12226 | Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴)))) | ||
| Theorem | cos2t 12227 | Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) | ||
| Theorem | cos2tsin 12228 | Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) | ||
| Theorem | sinbnd 12229 | The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1)) | ||
| Theorem | cosbnd 12230 | The cosine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1)) | ||
| Theorem | sinbnd2 12231 | The sine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.) |
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ (-1[,]1)) | ||
| Theorem | cosbnd2 12232 | The cosine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ (-1[,]1)) | ||
| Theorem | ef01bndlem 12233* | Lemma for sin01bnd 12234 and cos01bnd 12235. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)) < ((𝐴↑4) / 6)) | ||
| Theorem | sin01bnd 12234 | Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)) | ||
| Theorem | cos01bnd 12235 | Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))) | ||
| Theorem | cos1bnd 12236 | Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) | ||
| Theorem | cos2bnd 12237 | Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (-(7 / 9) < (cos‘2) ∧ (cos‘2) < -(1 / 9)) | ||
| Theorem | sinltxirr 12238* | The sine of a positive irrational number is less than its argument. Here irrational means apart from any rational number. (Contributed by Mario Carneiro, 29-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → (sin‘𝐴) < 𝐴) | ||
| Theorem | sin01gt0 12239 | The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.) |
| ⊢ (𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴)) | ||
| Theorem | cos01gt0 12240 | The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴)) | ||
| Theorem | sin02gt0 12241 | The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴)) | ||
| Theorem | sincos1sgn 12242 | The signs of the sine and cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (0 < (sin‘1) ∧ 0 < (cos‘1)) | ||
| Theorem | sincos2sgn 12243 | The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) | ||
| Theorem | sin4lt0 12244 | The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (sin‘4) < 0 | ||
| Theorem | cos12dec 12245 | Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.) |
| ⊢ ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴)) | ||
| Theorem | absefi 12246 | The absolute value of the exponential of an imaginary number is one. Equation 48 of [Rudin] p. 167. (Contributed by Jason Orendorff, 9-Feb-2007.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1) | ||
| Theorem | absef 12247 | The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴))) | ||
| Theorem | absefib 12248 | A complex number is real iff the exponential of its product with i has absolute value one. (Contributed by NM, 21-Aug-2008.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1)) | ||
| Theorem | efieq1re 12249 | A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ) | ||
| Theorem | demoivre 12250 | De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula, but restricted to nonnegative integer powers. See also demoivreALT 12251 for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) | ||
| Theorem | demoivreALT 12251 | Alternate proof of demoivre 12250. It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) | ||
| Syntax | ctau 12252 | Extend class notation to include the constant tau, τ = 6.28318.... |
| class τ | ||
| Definition | df-tau 12253 | Define the circle constant tau, τ = 6.28318..., which is the smallest positive real number whose cosine is one. Various notations have been used or proposed for this number including τ, a three-legged variant of π, or 2π. Note the difference between this constant τ and the formula variable 𝜏. Following our convention, the constant is displayed in upright font while the variable is in italic font; furthermore, the colors are different. (Contributed by Jim Kingdon, 9-Apr-2018.) (Revised by AV, 1-Oct-2020.) |
| ⊢ τ = inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) | ||
| Theorem | eirraplem 12254* | Lemma for eirrap 12255. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 5-Jan-2022.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) & ⊢ (𝜑 → 𝑃 ∈ ℤ) & ⊢ (𝜑 → 𝑄 ∈ ℕ) ⇒ ⊢ (𝜑 → e # (𝑃 / 𝑄)) | ||
| Theorem | eirrap 12255 | e is irrational. That is, for any rational number, e is apart from it. In the absence of excluded middle, we can distinguish between this and saying that e is not rational, which is eirr 12256. (Contributed by Jim Kingdon, 6-Jan-2023.) |
| ⊢ (𝑄 ∈ ℚ → e # 𝑄) | ||
| Theorem | eirr 12256 | e is not rational. In the absence of excluded middle, we can distinguish between this and saying that e is irrational in the sense of being apart from any rational number, which is eirrap 12255. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 6-Jan-2023.) |
| ⊢ e ∉ ℚ | ||
| Theorem | egt2lt3 12257 | Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 28-Nov-2008.) (Revised by Jim Kingdon, 7-Jan-2023.) |
| ⊢ (2 < e ∧ e < 3) | ||
| Theorem | epos 12258 | Euler's constant e is greater than 0. (Contributed by Jeff Hankins, 22-Nov-2008.) |
| ⊢ 0 < e | ||
| Theorem | epr 12259 | Euler's constant e is a positive real. (Contributed by Jeff Hankins, 22-Nov-2008.) |
| ⊢ e ∈ ℝ+ | ||
| Theorem | ene0 12260 | e is not 0. (Contributed by David A. Wheeler, 17-Oct-2017.) |
| ⊢ e ≠ 0 | ||
| Theorem | eap0 12261 | e is apart from 0. (Contributed by Jim Kingdon, 7-Jan-2023.) |
| ⊢ e # 0 | ||
| Theorem | ene1 12262 | e is not 1. (Contributed by David A. Wheeler, 17-Oct-2017.) |
| ⊢ e ≠ 1 | ||
| Theorem | eap1 12263 | e is apart from 1. (Contributed by Jim Kingdon, 7-Jan-2023.) |
| ⊢ e # 1 | ||
This part introduces elementary number theory, in particular the elementary properties of divisibility and elementary prime number theory. | ||
| Syntax | cdvds 12264 | Extend the definition of a class to include the divides relation. See df-dvds 12265. |
| class ∥ | ||
| Definition | df-dvds 12265* | Define the divides relation, see definition in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} | ||
| Theorem | divides 12266* | Define the divides relation. 𝑀 ∥ 𝑁 means 𝑀 divides into 𝑁 with no remainder. For example, 3 ∥ 6 (ex-dvds 16004). As proven in dvdsval3 12268, 𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0. See divides 12266 and dvdsval2 12267 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) | ||
| Theorem | dvdsval2 12267 | One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) | ||
| Theorem | dvdsval3 12268 | One nonzero integer divides another integer if and only if the remainder upon division is zero, see remark in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 15-Jul-2014.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0)) | ||
| Theorem | dvdszrcl 12269 | Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) | ||
| Theorem | dvdsmod0 12270 | If a positive integer divides another integer, then the remainder upon division is zero. (Contributed by AV, 3-Mar-2022.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝑁) → (𝑁 mod 𝑀) = 0) | ||
| Theorem | p1modz1 12271 | If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.) |
| ⊢ ((𝑀 ∥ 𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1) | ||
| Theorem | dvdsmodexp 12272 | If a positive integer divides another integer, this other integer is equal to its positive powers modulo the positive integer. (Formerly part of the proof for fermltl 12722). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by AV, 19-Mar-2022.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∥ 𝐴) → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁)) | ||
| Theorem | nndivdvds 12273 | Strong form of dvdsval2 12267 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ)) | ||
| Theorem | nndivides 12274* | Definition of the divides relation for positive integers. (Contributed by AV, 26-Jul-2021.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (𝑛 · 𝑀) = 𝑁)) | ||
| Theorem | dvdsdc 12275 | Divisibility is decidable. (Contributed by Jim Kingdon, 14-Nov-2021.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ∥ 𝑁) | ||
| Theorem | moddvds 12276 | Two ways to say 𝐴≡𝐵 (mod 𝑁), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 𝐵))) | ||
| Theorem | modm1div 12277 | An integer greater than one divides another integer minus one iff the second integer modulo the first integer is one. (Contributed by AV, 30-May-2023.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ 𝑁 ∥ (𝐴 − 1))) | ||
| Theorem | dvds0lem 12278 | A lemma to assist theorems of ∥ with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀 ∥ 𝑁) | ||
| Theorem | dvds1lem 12279* | A lemma to assist theorems of ∥ with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) & ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑍 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁)) ⇒ ⊢ (𝜑 → (𝐽 ∥ 𝐾 → 𝑀 ∥ 𝑁)) | ||
| Theorem | dvds2lem 12280* | A lemma to assist theorems of ∥ with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ)) & ⊢ (𝜑 → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) & ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑍 ∈ ℤ) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → (𝑍 · 𝑀) = 𝑁)) ⇒ ⊢ (𝜑 → ((𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿) → 𝑀 ∥ 𝑁)) | ||
| Theorem | iddvds 12281 | An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) | ||
| Theorem | 1dvds 12282 | 1 divides any integer. Theorem 1.1(f) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → 1 ∥ 𝑁) | ||
| Theorem | dvds0 12283 | Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) | ||
| Theorem | negdvdsb 12284 | An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ -𝑀 ∥ 𝑁)) | ||
| Theorem | dvdsnegb 12285 | An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ -𝑁)) | ||
| Theorem | absdvdsb 12286 | An integer divides another iff its absolute value does. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (abs‘𝑀) ∥ 𝑁)) | ||
| Theorem | dvdsabsb 12287 | An integer divides another iff it divides its absolute value. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (abs‘𝑁))) | ||
| Theorem | 0dvds 12288 | Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 𝑁 = 0)) | ||
| Theorem | zdvdsdc 12289 | Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ∥ 𝑁) | ||
| Theorem | dvdsmul1 12290 | An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) | ||
| Theorem | dvdsmul2 12291 | An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁)) | ||
| Theorem | iddvdsexp 12292 | An integer divides a positive integer power of itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∥ (𝑀↑𝑁)) | ||
| Theorem | muldvds1 12293 | If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁 → 𝐾 ∥ 𝑁)) | ||
| Theorem | muldvds2 12294 | If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁 → 𝑀 ∥ 𝑁)) | ||
| Theorem | dvdscmul 12295 | Multiplication by a constant maintains the divides relation. Theorem 1.1(d) in [ApostolNT] p. 14 (multiplication property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁))) | ||
| Theorem | dvdsmulc 12296 | Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾))) | ||
| Theorem | dvdscmulr 12297 | Cancellation law for the divides relation. Theorem 1.1(e) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) ↔ 𝑀 ∥ 𝑁)) | ||
| Theorem | dvdsmulcr 12298 | Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀 · 𝐾) ∥ (𝑁 · 𝐾) ↔ 𝑀 ∥ 𝑁)) | ||
| Theorem | summodnegmod 12299 | The sum of two integers modulo a positive integer equals zero iff the first of the two integers equals the negative of the other integer modulo the positive integer. (Contributed by AV, 25-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 𝐵) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = (-𝐵 mod 𝑁))) | ||
| Theorem | modmulconst 12300 | Constant multiplication in a modulo operation, see theorem 5.3 in [ApostolNT] p. 108. (Contributed by AV, 21-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |