Theorem List for Intuitionistic Logic Explorer - 12201-12300 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | pythagtriplem10 12201 |
Lemma for pythagtrip 12215. Show that 𝐶 − 𝐵 is positive. (Contributed
by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro,
19-Apr-2014.)
|
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶 − 𝐵)) |
|
Theorem | pythagtriplem6 12202 |
Lemma for pythagtrip 12215. Calculate (√‘(𝐶 − 𝐵)).
(Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro,
19-Apr-2014.)
|
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) = ((𝐶 − 𝐵) gcd 𝐴)) |
|
Theorem | pythagtriplem7 12203 |
Lemma for pythagtrip 12215. Calculate (√‘(𝐶 + 𝐵)).
(Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro,
19-Apr-2014.)
|
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) = ((𝐶 + 𝐵) gcd 𝐴)) |
|
Theorem | pythagtriplem8 12204 |
Lemma for pythagtrip 12215. Show that (√‘(𝐶 − 𝐵)) is a
positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised
by Mario Carneiro, 19-Apr-2014.)
|
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℕ) |
|
Theorem | pythagtriplem9 12205 |
Lemma for pythagtrip 12215. Show that (√‘(𝐶 + 𝐵)) is a
positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised
by Mario Carneiro, 19-Apr-2014.)
|
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℕ) |
|
Theorem | pythagtriplem11 12206 |
Lemma for pythagtrip 12215. Show that 𝑀 (which will eventually
be
closely related to the 𝑚 in the final statement) is a natural.
(Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro,
19-Apr-2014.)
|
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 ∈ ℕ) |
|
Theorem | pythagtriplem12 12207 |
Lemma for pythagtrip 12215. Calculate the square of 𝑀.
(Contributed
by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro,
19-Apr-2014.)
|
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀↑2) = ((𝐶 + 𝐴) / 2)) |
|
Theorem | pythagtriplem13 12208 |
Lemma for pythagtrip 12215. Show that 𝑁 (which will eventually
be
closely related to the 𝑛 in the final statement) is a natural.
(Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro,
19-Apr-2014.)
|
⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 ∈ ℕ) |
|
Theorem | pythagtriplem14 12209 |
Lemma for pythagtrip 12215. Calculate the square of 𝑁.
(Contributed
by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro,
19-Apr-2014.)
|
⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑁↑2) = ((𝐶 − 𝐴) / 2)) |
|
Theorem | pythagtriplem15 12210 |
Lemma for pythagtrip 12215. Show the relationship between 𝑀, 𝑁,
and 𝐴. (Contributed by Scott Fenton,
17-Apr-2014.) (Revised by
Mario Carneiro, 19-Apr-2014.)
|
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 = ((𝑀↑2) − (𝑁↑2))) |
|
Theorem | pythagtriplem16 12211 |
Lemma for pythagtrip 12215. Show the relationship between 𝑀, 𝑁,
and 𝐵. (Contributed by Scott Fenton,
17-Apr-2014.) (Revised by
Mario Carneiro, 19-Apr-2014.)
|
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁))) |
|
Theorem | pythagtriplem17 12212 |
Lemma for pythagtrip 12215. Show the relationship between 𝑀, 𝑁,
and 𝐶. (Contributed by Scott Fenton,
17-Apr-2014.) (Revised by
Mario Carneiro, 19-Apr-2014.)
|
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 = ((𝑀↑2) + (𝑁↑2))) |
|
Theorem | pythagtriplem18 12213* |
Lemma for pythagtrip 12215. Wrap the previous 𝑀 and 𝑁 up in
quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by
Mario Carneiro, 19-Apr-2014.)
|
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2)))) |
|
Theorem | pythagtriplem19 12214* |
Lemma for pythagtrip 12215. Introduce 𝑘 and remove the relative
primality requirement. (Contributed by Scott Fenton, 18-Apr-2014.)
(Revised by Mario Carneiro, 19-Apr-2014.)
|
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) |
|
Theorem | pythagtrip 12215* |
Parameterize the Pythagorean triples. If 𝐴, 𝐵, and 𝐶 are
naturals, then they obey the Pythagorean triple formula iff they are
parameterized by three naturals. This proof follows the Isabelle proof
at http://afp.sourceforge.net/entries/Fermat3_4.shtml.
This is
Metamath 100 proof #23. (Contributed by Scott Fenton, 19-Apr-2014.)
|
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))) |
|
5.2.8 The prime count function
|
|
Syntax | cpc 12216 |
Extend class notation with the prime count function.
|
class pCnt |
|
Definition | df-pc 12217* |
Define the prime count function, which returns the largest exponent of a
given prime (or other positive integer) that divides the number. For
rational numbers, it returns negative values according to the power of a
prime in the denominator. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
⊢ pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) |
|
Theorem | pclem0 12218* |
Lemma for the prime power pre-function's properties. (Contributed by
Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon,
7-Oct-2024.)
|
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2)
∧ (𝑁 ∈ ℤ
∧ 𝑁 ≠ 0)) → 0
∈ 𝐴) |
|
Theorem | pclemub 12219* |
Lemma for the prime power pre-function's properties. (Contributed by
Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon,
7-Oct-2024.)
|
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2)
∧ (𝑁 ∈ ℤ
∧ 𝑁 ≠ 0)) →
∃𝑥 ∈ ℤ
∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
|
Theorem | pclemdc 12220* |
Lemma for the prime power pre-function's properties. (Contributed by
Jim Kingdon, 8-Oct-2024.)
|
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2)
∧ (𝑁 ∈ ℤ
∧ 𝑁 ≠ 0)) →
∀𝑥 ∈ ℤ
DECID 𝑥
∈ 𝐴) |
|
Theorem | pcprecl 12221* |
Closure of the prime power pre-function. (Contributed by Mario
Carneiro, 23-Feb-2014.)
|
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}
& ⊢ 𝑆 = sup(𝐴, ℝ, < )
⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2)
∧ (𝑁 ∈ ℤ
∧ 𝑁 ≠ 0)) →
(𝑆 ∈
ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
|
Theorem | pcprendvds 12222* |
Non-divisibility property of the prime power pre-function.
(Contributed by Mario Carneiro, 23-Feb-2014.)
|
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}
& ⊢ 𝑆 = sup(𝐴, ℝ, < )
⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2)
∧ (𝑁 ∈ ℤ
∧ 𝑁 ≠ 0)) →
¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) |
|
Theorem | pcprendvds2 12223* |
Non-divisibility property of the prime power pre-function.
(Contributed by Mario Carneiro, 23-Feb-2014.)
|
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}
& ⊢ 𝑆 = sup(𝐴, ℝ, < )
⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2)
∧ (𝑁 ∈ ℤ
∧ 𝑁 ≠ 0)) →
¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑆))) |
|
Theorem | pcpre1 12224* |
Value of the prime power pre-function at 1. (Contributed by Mario
Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.)
|
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}
& ⊢ 𝑆 = sup(𝐴, ℝ, < )
⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2)
∧ 𝑁 = 1) → 𝑆 = 0) |
|
Theorem | pcpremul 12225* |
Multiplicative property of the prime count pre-function. Note that the
primality of 𝑃 is essential for this property;
(4 pCnt 2) = 0
but (4 pCnt (2 · 2)) = 1 ≠ 2 · (4 pCnt
2) = 0. Since
this is needed to show uniqueness for the real prime count function
(over ℚ), we don't bother to define it off
the primes.
(Contributed by Mario Carneiro, 23-Feb-2014.)
|
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑀}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}, ℝ, < ) & ⊢ 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}, ℝ, <
) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) = 𝑈) |
|
Theorem | pceulem 12226* |
Lemma for pceu 12227. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) & ⊢ 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) & ⊢ 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ≠ 0) & ⊢ (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) & ⊢ (𝜑 → 𝑁 = (𝑥 / 𝑦))
& ⊢ (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ)) & ⊢ (𝜑 → 𝑁 = (𝑠 / 𝑡)) ⇒ ⊢ (𝜑 → (𝑆 − 𝑇) = (𝑈 − 𝑉)) |
|
Theorem | pceu 12227* |
Uniqueness for the prime power function. (Contributed by Mario
Carneiro, 23-Feb-2014.)
|
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )
⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) |
|
Theorem | pcval 12228* |
The value of the prime power function. (Contributed by Mario Carneiro,
23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
|
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )
⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
|
Theorem | pczpre 12229* |
Connect the prime count pre-function to the actual prime count function,
when restricted to the integers. (Contributed by Mario Carneiro,
23-Feb-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
|
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}, ℝ, < )
⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = 𝑆) |
|
Theorem | pczcl 12230 |
Closure of the prime power function. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈
ℕ0) |
|
Theorem | pccl 12231 |
Closure of the prime power function. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 pCnt 𝑁) ∈
ℕ0) |
|
Theorem | pccld 12232 |
Closure of the prime power function. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℕ)
⇒ ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈
ℕ0) |
|
Theorem | pcmul 12233 |
Multiplication property of the prime power function. (Contributed by
Mario Carneiro, 23-Feb-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) |
|
Theorem | pcdiv 12234 |
Division property of the prime power function. (Contributed by Mario
Carneiro, 1-Mar-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))) |
|
Theorem | pcqmul 12235 |
Multiplication property of the prime power function. (Contributed by
Mario Carneiro, 9-Sep-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) |
|
Theorem | pc0 12236 |
The value of the prime power function at zero. (Contributed by Mario
Carneiro, 3-Oct-2014.)
|
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞) |
|
Theorem | pc1 12237 |
Value of the prime count function at 1. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) |
|
Theorem | pcqcl 12238 |
Closure of the general prime count function. (Contributed by Mario
Carneiro, 23-Feb-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ) |
|
Theorem | pcqdiv 12239 |
Division property of the prime power function. (Contributed by Mario
Carneiro, 10-Aug-2015.)
|
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))) |
|
Theorem | pcrec 12240 |
Prime power of a reciprocal. (Contributed by Mario Carneiro,
10-Aug-2015.)
|
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (1 / 𝐴)) = -(𝑃 pCnt 𝐴)) |
|
Theorem | pcexp 12241 |
Prime power of an exponential. (Contributed by Mario Carneiro,
10-Aug-2015.)
|
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))) |
|
Theorem | pcxnn0cl 12242 |
Extended nonnegative integer closure of the general prime count
function. (Contributed by Jim Kingdon, 13-Oct-2024.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt 𝑁) ∈
ℕ0*) |
|
Theorem | pcxcl 12243 |
Extended real closure of the general prime count function. (Contributed
by Mario Carneiro, 3-Oct-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑃 pCnt 𝑁) ∈
ℝ*) |
|
Theorem | pcge0 12244 |
The prime count of an integer is greater than or equal to zero.
(Contributed by Mario Carneiro, 3-Oct-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 0 ≤ (𝑃 pCnt 𝑁)) |
|
Theorem | pczdvds 12245 |
Defining property of the prime count function. (Contributed by Mario
Carneiro, 9-Sep-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) |
|
Theorem | pcdvds 12246 |
Defining property of the prime count function. (Contributed by Mario
Carneiro, 23-Feb-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) |
|
Theorem | pczndvds 12247 |
Defining property of the prime count function. (Contributed by Mario
Carneiro, 3-Oct-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁) |
|
Theorem | pcndvds 12248 |
Defining property of the prime count function. (Contributed by Mario
Carneiro, 23-Feb-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁) |
|
Theorem | pczndvds2 12249 |
The remainder after dividing out all factors of 𝑃 is not divisible
by 𝑃. (Contributed by Mario Carneiro,
9-Sep-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) |
|
Theorem | pcndvds2 12250 |
The remainder after dividing out all factors of 𝑃 is not divisible
by 𝑃. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) |
|
Theorem | pcdvdsb 12251 |
𝑃↑𝐴 divides 𝑁 if and only if 𝐴 is at
most the count of
𝑃. (Contributed by Mario Carneiro,
3-Oct-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃↑𝐴) ∥ 𝑁)) |
|
Theorem | pcelnn 12252 |
There are a positive number of powers of a prime 𝑃 in 𝑁 iff
𝑃
divides 𝑁. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃 ∥ 𝑁)) |
|
Theorem | pceq0 12253 |
There are zero powers of a prime 𝑃 in 𝑁 iff 𝑃 does
not divide
𝑁. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) = 0 ↔ ¬ 𝑃 ∥ 𝑁)) |
|
Theorem | pcidlem 12254 |
The prime count of a prime power. (Contributed by Mario Carneiro,
12-Mar-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
|
Theorem | pcid 12255 |
The prime count of a prime power. (Contributed by Mario Carneiro,
9-Sep-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
|
Theorem | pcneg 12256 |
The prime count of a negative number. (Contributed by Mario Carneiro,
13-Mar-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴)) |
|
Theorem | pcabs 12257 |
The prime count of an absolute value. (Contributed by Mario Carneiro,
13-Mar-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴)) |
|
Theorem | pcdvdstr 12258 |
The prime count increases under the divisibility relation. (Contributed
by Mario Carneiro, 13-Mar-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) |
|
Theorem | pcgcd1 12259 |
The prime count of a GCD is the minimum of the prime counts of the
arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
|
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴)) |
|
Theorem | pcgcd 12260 |
The prime count of a GCD is the minimum of the prime counts of the
arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵))) |
|
Theorem | pc2dvds 12261* |
A characterization of divisibility in terms of prime count.
(Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario
Carneiro, 3-Oct-2014.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))) |
|
Theorem | pc11 12262* |
The prime count function, viewed as a function from ℕ to
(ℕ ↑𝑚 ℙ), is
one-to-one. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
→ (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))) |
|
Theorem | pcz 12263* |
The prime count function can be used as an indicator that a given
rational number is an integer. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
⊢ (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴))) |
|
Theorem | pcprmpw2 12264* |
Self-referential expression for a prime power. (Contributed by Mario
Carneiro, 16-Jan-2015.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0
𝐴 ∥ (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
|
Theorem | pcprmpw 12265* |
Self-referential expression for a prime power. (Contributed by Mario
Carneiro, 16-Jan-2015.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0
𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
|
Theorem | dvdsprmpweq 12266* |
If a positive integer divides a prime power, it is a prime power.
(Contributed by AV, 25-Jul-2021.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) |
|
Theorem | dvdsprmpweqnn 12267* |
If an integer greater than 1 divides a prime power, it is a (proper)
prime power. (Contributed by AV, 13-Aug-2021.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2)
∧ 𝑁 ∈
ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
|
Theorem | dvdsprmpweqle 12268* |
If a positive integer divides a prime power, it is a prime power with a
smaller exponent. (Contributed by AV, 25-Jul-2021.)
|
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 (𝑛 ≤ 𝑁 ∧ 𝐴 = (𝑃↑𝑛)))) |
|
Theorem | difsqpwdvds 12269 |
If the difference of two squares is a power of a prime, the prime
divides twice the second squared number. (Contributed by AV,
13-Aug-2021.)
|
⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0
∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) →
((𝐶↑𝐷) = ((𝐴↑2) − (𝐵↑2)) → 𝐶 ∥ (2 · 𝐵))) |
|
Theorem | pcaddlem 12270 |
Lemma for pcadd 12271. The original numbers 𝐴 and
𝐵
have been
decomposed using the prime count function as (𝑃↑𝑀) · (𝑅 / 𝑆)
where 𝑅, 𝑆 are both not divisible by 𝑃 and
𝑀 =
(𝑃 pCnt 𝐴), and similarly for 𝐵.
(Contributed by Mario
Carneiro, 9-Sep-2014.)
|
⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 = ((𝑃↑𝑀) · (𝑅 / 𝑆))) & ⊢ (𝜑 → 𝐵 = ((𝑃↑𝑁) · (𝑇 / 𝑈))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (𝑅 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝑅)) & ⊢ (𝜑 → (𝑆 ∈ ℕ ∧ ¬ 𝑃 ∥ 𝑆)) & ⊢ (𝜑 → (𝑇 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝑇)) & ⊢ (𝜑 → (𝑈 ∈ ℕ ∧ ¬ 𝑃 ∥ 𝑈)) ⇒ ⊢ (𝜑 → 𝑀 ≤ (𝑃 pCnt (𝐴 + 𝐵))) |
|
Theorem | pcadd 12271 |
An inequality for the prime count of a sum. This is the source of the
ultrametric inequality for the p-adic metric. (Contributed by Mario
Carneiro, 9-Sep-2014.)
|
⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝐵 ∈ ℚ) & ⊢ (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) ⇒ ⊢ (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))) |
|
Theorem | pcmptcl 12272 |
Closure for the prime power map. (Contributed by Mario Carneiro,
12-Mar-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈
ℕ0) ⇒ ⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1(
· , 𝐹):ℕ⟶ℕ)) |
|
Theorem | pcmpt 12273* |
Construct a function with given prime count characteristics.
(Contributed by Mario Carneiro, 12-Mar-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈
ℕ0)
& ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝑛 = 𝑃 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃 ≤ 𝑁, 𝐵, 0)) |
|
Theorem | pcmpt2 12274* |
Dividing two prime count maps yields a number with all dividing primes
confined to an interval. (Contributed by Mario Carneiro,
14-Mar-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈
ℕ0)
& ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝑛 = 𝑃 → 𝐴 = 𝐵)
& ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑁))
⇒ ⊢ (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁), 𝐵, 0)) |
|
Theorem | pcmptdvds 12275 |
The partial products of the prime power map form a divisibility chain.
(Contributed by Mario Carneiro, 12-Mar-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈
ℕ0)
& ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑁))
⇒ ⊢ (𝜑 → (seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀)) |
|
Theorem | pcprod 12276* |
The product of the primes taken to their respective powers reconstructs
the original number. (Contributed by Mario Carneiro, 12-Mar-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ (𝑁 ∈ ℕ → (seq1( · ,
𝐹)‘𝑁) = 𝑁) |
|
Theorem | sumhashdc 12277* |
The sum of 1 over a set is the size of the set. (Contributed by Mario
Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 20-May-2014.)
|
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 1, 0) = (♯‘𝐴)) |
|
Theorem | fldivp1 12278 |
The difference between the floors of adjacent fractions is either 1 or 0.
(Contributed by Mario Carneiro, 8-Mar-2014.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((⌊‘((𝑀 + 1) /
𝑁)) −
(⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0)) |
|
Theorem | pcfaclem 12279 |
Lemma for pcfac 12280. (Contributed by Mario Carneiro,
20-May-2014.)
|
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) →
(⌊‘(𝑁 / (𝑃↑𝑀))) = 0) |
|
Theorem | pcfac 12280* |
Calculate the prime count of a factorial. (Contributed by Mario
Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
|
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃↑𝑘)))) |
|
Theorem | pcbc 12281* |
Calculate the prime count of a binomial coefficient. (Contributed by
Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro,
21-May-2014.)
|
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃↑𝑘))) − ((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))))) |
|
Theorem | qexpz 12282 |
If a power of a rational number is an integer, then the number is an
integer. (Contributed by Mario Carneiro, 10-Aug-2015.)
|
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑁) ∈ ℤ) → 𝐴 ∈ ℤ) |
|
Theorem | expnprm 12283 |
A second or higher power of a rational number is not a prime number. Or
by contraposition, the n-th root of a prime number is not rational.
Suggested by Norm Megill. (Contributed by Mario Carneiro,
10-Aug-2015.)
|
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ≥‘2))
→ ¬ (𝐴↑𝑁) ∈
ℙ) |
|
Theorem | oddprmdvds 12284* |
Every positive integer which is not a power of two is divisible by an
odd prime number. (Contributed by AV, 6-Aug-2021.)
|
⊢ ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0
𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖
{2})𝑝 ∥ 𝐾) |
|
5.2.9 Pocklington's theorem
|
|
Theorem | prmpwdvds 12285 |
A relation involving divisibility by a prime power. (Contributed by
Mario Carneiro, 2-Mar-2014.)
|
⊢ (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ (𝐷 ∥ (𝐾 · (𝑃↑𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1))))) → (𝑃↑𝑁) ∥ 𝐷) |
|
Theorem | pockthlem 12286 |
Lemma for pockthg 12287. (Contributed by Mario Carneiro,
2-Mar-2014.)
|
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 < 𝐴)
& ⊢ (𝜑 → 𝑁 = ((𝐴 · 𝐵) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑃 ∥ 𝑁)
& ⊢ (𝜑 → 𝑄 ∈ ℙ) & ⊢ (𝜑 → (𝑄 pCnt 𝐴) ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → ((𝐶↑(𝑁 − 1)) mod 𝑁) = 1) & ⊢ (𝜑 → (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁) = 1) ⇒ ⊢ (𝜑 → (𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1))) |
|
Theorem | pockthg 12287* |
The generalized Pocklington's theorem. If 𝑁 − 1 = 𝐴 · 𝐵 where
𝐵
< 𝐴, then 𝑁 is
prime if and only if for every prime factor
𝑝 of 𝐴, there is an 𝑥 such that
𝑥↑(𝑁 − 1) = 1( mod 𝑁) and
gcd (𝑥↑((𝑁 − 1) / 𝑝) − 1, 𝑁) = 1. (Contributed by Mario
Carneiro, 2-Mar-2014.)
|
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 < 𝐴)
& ⊢ (𝜑 → 𝑁 = ((𝐴 · 𝐵) + 1)) & ⊢ (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ 𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℙ) |
|
Theorem | pockthi 12288 |
Pocklington's theorem, which gives a sufficient criterion for a number
𝑁 to be prime. This is the preferred
method for verifying large
primes, being much more efficient to compute than trial division. This
form has been optimized for application to specific large primes; see
pockthg 12287 for a more general closed-form version.
(Contributed by Mario
Carneiro, 2-Mar-2014.)
|
⊢ 𝑃 ∈ ℙ & ⊢ 𝐺 ∈ ℕ & ⊢ 𝑀 = (𝐺 · 𝑃)
& ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝐷 ∈ ℕ & ⊢ 𝐸 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝑀 = (𝐷 · (𝑃↑𝐸)) & ⊢ 𝐷 < (𝑃↑𝐸)
& ⊢ ((𝐴↑𝑀) mod 𝑁) = (1 mod 𝑁)
& ⊢ (((𝐴↑𝐺) − 1) gcd 𝑁) = 1 ⇒ ⊢ 𝑁 ∈ ℙ |
|
5.2.10 Infinite primes theorem
|
|
Theorem | infpnlem1 12289* |
Lemma for infpn 12291. The smallest divisor (greater than 1)
𝑀
of
𝑁!
+ 1 is a prime greater than 𝑁. (Contributed by NM,
5-May-2005.)
|
⊢ 𝐾 = ((!‘𝑁) + 1) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗)) → (𝑁 < 𝑀 ∧ ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀))))) |
|
Theorem | infpnlem2 12290* |
Lemma for infpn 12291. For any positive integer 𝑁, there
exists a
prime number 𝑗 greater than 𝑁. (Contributed by NM,
5-May-2005.)
|
⊢ 𝐾 = ((!‘𝑁) + 1) ⇒ ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) |
|
Theorem | infpn 12291* |
There exist infinitely many prime numbers: for any positive integer
𝑁, there exists a prime number 𝑗 greater
than 𝑁. (See
infpn2 12389 for the equinumerosity version.)
(Contributed by NM,
1-Jun-2006.)
|
⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) |
|
Theorem | prmunb 12292* |
The primes are unbounded. (Contributed by Paul Chapman,
28-Nov-2012.)
|
⊢ (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑁 < 𝑝) |
|
5.2.11 Fundamental theorem of
arithmetic
|
|
Theorem | 1arithlem1 12293* |
Lemma for 1arith 12297. (Contributed by Mario Carneiro,
30-May-2014.)
|
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝑀‘𝑁) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁))) |
|
Theorem | 1arithlem2 12294* |
Lemma for 1arith 12297. (Contributed by Mario Carneiro,
30-May-2014.)
|
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((𝑀‘𝑁)‘𝑃) = (𝑃 pCnt 𝑁)) |
|
Theorem | 1arithlem3 12295* |
Lemma for 1arith 12297. (Contributed by Mario Carneiro,
30-May-2014.)
|
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝑀‘𝑁):ℙ⟶ℕ0) |
|
Theorem | 1arithlem4 12296* |
Lemma for 1arith 12297. (Contributed by Mario Carneiro,
30-May-2014.)
|
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) & ⊢ 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹‘𝑦)), 1)) & ⊢ (𝜑 → 𝐹:ℙ⟶ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁 ≤ 𝑞)) → (𝐹‘𝑞) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) |
|
Theorem | 1arith 12297* |
Fundamental theorem of arithmetic, where a prime factorization is
represented as a sequence of prime exponents, for which only finitely
many primes have nonzero exponent. The function 𝑀 maps
the set of
positive integers one-to-one onto the set of prime factorizations
𝑅. (Contributed by Paul Chapman,
17-Nov-2012.) (Proof shortened
by Mario Carneiro, 30-May-2014.)
|
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) & ⊢ 𝑅 = {𝑒 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑒 “ ℕ) ∈
Fin} ⇒ ⊢ 𝑀:ℕ–1-1-onto→𝑅 |
|
Theorem | 1arith2 12298* |
Fundamental theorem of arithmetic, where a prime factorization is
represented as a finite monotonic 1-based sequence of primes. Every
positive integer has a unique prime factorization. Theorem 1.10 in
[ApostolNT] p. 17. This is Metamath
100 proof #80. (Contributed by
Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro,
30-May-2014.)
|
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) & ⊢ 𝑅 = {𝑒 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑒 “ ℕ) ∈
Fin} ⇒ ⊢ ∀𝑧 ∈ ℕ ∃!𝑔 ∈ 𝑅 (𝑀‘𝑧) = 𝑔 |
|
5.2.12 Lagrange's four-square
theorem
|
|
Syntax | cgz 12299 |
Extend class notation with the set of gaussian integers.
|
class ℤ[i] |
|
Definition | df-gz 12300 |
Define the set of gaussian integers, which are complex numbers whose real
and imaginary parts are integers. (Note that the [i] is actually
part of the symbol token and has no independent meaning.) (Contributed by
Mario Carneiro, 14-Jul-2014.)
|
⊢ ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧
(ℑ‘𝑥) ∈
ℤ)} |