Detailed syntax breakdown of Definition df-pt
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cpt 12926 | 
. 2
class
∏t | 
| 2 |   | vf | 
. . 3
setvar 𝑓 | 
| 3 |   | cvv 2763 | 
. . 3
class
V | 
| 4 |   | vg | 
. . . . . . . . . 10
setvar 𝑔 | 
| 5 | 4 | cv 1363 | 
. . . . . . . . 9
class 𝑔 | 
| 6 | 2 | cv 1363 | 
. . . . . . . . . 10
class 𝑓 | 
| 7 | 6 | cdm 4663 | 
. . . . . . . . 9
class dom 𝑓 | 
| 8 | 5, 7 | wfn 5253 | 
. . . . . . . 8
wff 𝑔 Fn dom 𝑓 | 
| 9 |   | vy | 
. . . . . . . . . . . 12
setvar 𝑦 | 
| 10 | 9 | cv 1363 | 
. . . . . . . . . . 11
class 𝑦 | 
| 11 | 10, 5 | cfv 5258 | 
. . . . . . . . . 10
class (𝑔‘𝑦) | 
| 12 | 10, 6 | cfv 5258 | 
. . . . . . . . . 10
class (𝑓‘𝑦) | 
| 13 | 11, 12 | wcel 2167 | 
. . . . . . . . 9
wff (𝑔‘𝑦) ∈ (𝑓‘𝑦) | 
| 14 | 13, 9, 7 | wral 2475 | 
. . . . . . . 8
wff
∀𝑦 ∈ dom
𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) | 
| 15 | 12 | cuni 3839 | 
. . . . . . . . . . 11
class ∪ (𝑓‘𝑦) | 
| 16 | 11, 15 | wceq 1364 | 
. . . . . . . . . 10
wff (𝑔‘𝑦) = ∪ (𝑓‘𝑦) | 
| 17 |   | vz | 
. . . . . . . . . . . 12
setvar 𝑧 | 
| 18 | 17 | cv 1363 | 
. . . . . . . . . . 11
class 𝑧 | 
| 19 | 7, 18 | cdif 3154 | 
. . . . . . . . . 10
class (dom
𝑓 ∖ 𝑧) | 
| 20 | 16, 9, 19 | wral 2475 | 
. . . . . . . . 9
wff
∀𝑦 ∈
(dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦) | 
| 21 |   | cfn 6799 | 
. . . . . . . . 9
class
Fin | 
| 22 | 20, 17, 21 | wrex 2476 | 
. . . . . . . 8
wff
∃𝑧 ∈ Fin
∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦) | 
| 23 | 8, 14, 22 | w3a 980 | 
. . . . . . 7
wff (𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) | 
| 24 |   | vx | 
. . . . . . . . 9
setvar 𝑥 | 
| 25 | 24 | cv 1363 | 
. . . . . . . 8
class 𝑥 | 
| 26 | 9, 7, 11 | cixp 6757 | 
. . . . . . . 8
class X𝑦 ∈
dom 𝑓(𝑔‘𝑦) | 
| 27 | 25, 26 | wceq 1364 | 
. . . . . . 7
wff 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦) | 
| 28 | 23, 27 | wa 104 | 
. . . . . 6
wff ((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦)) | 
| 29 | 28, 4 | wex 1506 | 
. . . . 5
wff
∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦)) | 
| 30 | 29, 24 | cab 2182 | 
. . . 4
class {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))} | 
| 31 |   | ctg 12925 | 
. . . 4
class
topGen | 
| 32 | 30, 31 | cfv 5258 | 
. . 3
class
(topGen‘{𝑥
∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))}) | 
| 33 | 2, 3, 32 | cmpt 4094 | 
. 2
class (𝑓 ∈ V ↦
(topGen‘{𝑥 ∣
∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))})) | 
| 34 | 1, 33 | wceq 1364 | 
1
wff
∏t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))})) |