ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgval GIF version

Theorem tgval 13144
Description: The topology generated by a basis. See also tgval2 14573 and tgval3 14580. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
Distinct variable groups:   𝑥,𝐵   𝑥,𝑉

Proof of Theorem tgval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 2785 . 2 (𝐵𝑉𝐵 ∈ V)
2 uniexg 4491 . . 3 (𝐵𝑉 𝐵 ∈ V)
3 abssexg 4231 . . 3 ( 𝐵 ∈ V → {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∈ V)
4 uniin 3873 . . . . . . 7 (𝐵 ∩ 𝒫 𝑥) ⊆ ( 𝐵 𝒫 𝑥)
5 sstr 3203 . . . . . . 7 ((𝑥 (𝐵 ∩ 𝒫 𝑥) ∧ (𝐵 ∩ 𝒫 𝑥) ⊆ ( 𝐵 𝒫 𝑥)) → 𝑥 ⊆ ( 𝐵 𝒫 𝑥))
64, 5mpan2 425 . . . . . 6 (𝑥 (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ( 𝐵 𝒫 𝑥))
7 ssin 3397 . . . . . 6 ((𝑥 𝐵𝑥 𝒫 𝑥) ↔ 𝑥 ⊆ ( 𝐵 𝒫 𝑥))
86, 7sylibr 134 . . . . 5 (𝑥 (𝐵 ∩ 𝒫 𝑥) → (𝑥 𝐵𝑥 𝒫 𝑥))
98ss2abi 3267 . . . 4 {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)}
10 ssexg 4188 . . . 4 (({𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∧ {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∈ V) → {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V)
119, 10mpan 424 . . 3 ({𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∈ V → {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V)
122, 3, 113syl 17 . 2 (𝐵𝑉 → {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V)
13 ineq1 3369 . . . . . 6 (𝑦 = 𝐵 → (𝑦 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
1413unieqd 3864 . . . . 5 (𝑦 = 𝐵 (𝑦 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
1514sseq2d 3225 . . . 4 (𝑦 = 𝐵 → (𝑥 (𝑦 ∩ 𝒫 𝑥) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
1615abbidv 2324 . . 3 (𝑦 = 𝐵 → {𝑥𝑥 (𝑦 ∩ 𝒫 𝑥)} = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
17 df-topgen 13142 . . 3 topGen = (𝑦 ∈ V ↦ {𝑥𝑥 (𝑦 ∩ 𝒫 𝑥)})
1816, 17fvmptg 5665 . 2 ((𝐵 ∈ V ∧ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V) → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
191, 12, 18syl2anc 411 1 (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {cab 2192  Vcvv 2773  cin 3167  wss 3168  𝒫 cpw 3618   cuni 3853  cfv 5277  topGenctg 13136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-iota 5238  df-fun 5279  df-fv 5285  df-topgen 13142
This theorem is referenced by:  tgvalex  13145  tgval2  14573  eltg  14574
  Copyright terms: Public domain W3C validator