![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tgval | GIF version |
Description: The topology generated by a basis. See also tgval2 14219 and tgval3 14226. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
tgval | ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
2 | uniexg 4470 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
3 | abssexg 4211 | . . 3 ⊢ (∪ 𝐵 ∈ V → {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∈ V) | |
4 | uniin 3855 | . . . . . . 7 ⊢ ∪ (𝐵 ∩ 𝒫 𝑥) ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥) | |
5 | sstr 3187 | . . . . . . 7 ⊢ ((𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) ∧ ∪ (𝐵 ∩ 𝒫 𝑥) ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) → 𝑥 ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) | |
6 | 4, 5 | mpan2 425 | . . . . . 6 ⊢ (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) |
7 | ssin 3381 | . . . . . 6 ⊢ ((𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥) ↔ 𝑥 ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) | |
8 | 6, 7 | sylibr 134 | . . . . 5 ⊢ (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)) |
9 | 8 | ss2abi 3251 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} |
10 | ssexg 4168 | . . . 4 ⊢ (({𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∧ {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∈ V) → {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) | |
11 | 9, 10 | mpan 424 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∈ V → {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) |
12 | 2, 3, 11 | 3syl 17 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) |
13 | ineq1 3353 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥)) | |
14 | 13 | unieqd 3846 | . . . . 5 ⊢ (𝑦 = 𝐵 → ∪ (𝑦 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑥)) |
15 | 14 | sseq2d 3209 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑥 ⊆ ∪ (𝑦 ∩ 𝒫 𝑥) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
16 | 15 | abbidv 2311 | . . 3 ⊢ (𝑦 = 𝐵 → {𝑥 ∣ 𝑥 ⊆ ∪ (𝑦 ∩ 𝒫 𝑥)} = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
17 | df-topgen 12871 | . . 3 ⊢ topGen = (𝑦 ∈ V ↦ {𝑥 ∣ 𝑥 ⊆ ∪ (𝑦 ∩ 𝒫 𝑥)}) | |
18 | 16, 17 | fvmptg 5633 | . 2 ⊢ ((𝐵 ∈ V ∧ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
19 | 1, 12, 18 | syl2anc 411 | 1 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 {cab 2179 Vcvv 2760 ∩ cin 3152 ⊆ wss 3153 𝒫 cpw 3601 ∪ cuni 3835 ‘cfv 5254 topGenctg 12865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-topgen 12871 |
This theorem is referenced by: tgvalex 12874 tgval2 14219 eltg 14220 |
Copyright terms: Public domain | W3C validator |