ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgval GIF version

Theorem tgval 12716
Description: The topology generated by a basis. See also tgval2 13636 and tgval3 13643. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval (𝐡 ∈ 𝑉 β†’ (topGenβ€˜π΅) = {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)})
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝑉

Proof of Theorem tgval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 2750 . 2 (𝐡 ∈ 𝑉 β†’ 𝐡 ∈ V)
2 uniexg 4441 . . 3 (𝐡 ∈ 𝑉 β†’ βˆͺ 𝐡 ∈ V)
3 abssexg 4184 . . 3 (βˆͺ 𝐡 ∈ V β†’ {π‘₯ ∣ (π‘₯ βŠ† βˆͺ 𝐡 ∧ π‘₯ βŠ† βˆͺ 𝒫 π‘₯)} ∈ V)
4 uniin 3831 . . . . . . 7 βˆͺ (𝐡 ∩ 𝒫 π‘₯) βŠ† (βˆͺ 𝐡 ∩ βˆͺ 𝒫 π‘₯)
5 sstr 3165 . . . . . . 7 ((π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯) ∧ βˆͺ (𝐡 ∩ 𝒫 π‘₯) βŠ† (βˆͺ 𝐡 ∩ βˆͺ 𝒫 π‘₯)) β†’ π‘₯ βŠ† (βˆͺ 𝐡 ∩ βˆͺ 𝒫 π‘₯))
64, 5mpan2 425 . . . . . 6 (π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯) β†’ π‘₯ βŠ† (βˆͺ 𝐡 ∩ βˆͺ 𝒫 π‘₯))
7 ssin 3359 . . . . . 6 ((π‘₯ βŠ† βˆͺ 𝐡 ∧ π‘₯ βŠ† βˆͺ 𝒫 π‘₯) ↔ π‘₯ βŠ† (βˆͺ 𝐡 ∩ βˆͺ 𝒫 π‘₯))
86, 7sylibr 134 . . . . 5 (π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯) β†’ (π‘₯ βŠ† βˆͺ 𝐡 ∧ π‘₯ βŠ† βˆͺ 𝒫 π‘₯))
98ss2abi 3229 . . . 4 {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)} βŠ† {π‘₯ ∣ (π‘₯ βŠ† βˆͺ 𝐡 ∧ π‘₯ βŠ† βˆͺ 𝒫 π‘₯)}
10 ssexg 4144 . . . 4 (({π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)} βŠ† {π‘₯ ∣ (π‘₯ βŠ† βˆͺ 𝐡 ∧ π‘₯ βŠ† βˆͺ 𝒫 π‘₯)} ∧ {π‘₯ ∣ (π‘₯ βŠ† βˆͺ 𝐡 ∧ π‘₯ βŠ† βˆͺ 𝒫 π‘₯)} ∈ V) β†’ {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)} ∈ V)
119, 10mpan 424 . . 3 ({π‘₯ ∣ (π‘₯ βŠ† βˆͺ 𝐡 ∧ π‘₯ βŠ† βˆͺ 𝒫 π‘₯)} ∈ V β†’ {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)} ∈ V)
122, 3, 113syl 17 . 2 (𝐡 ∈ 𝑉 β†’ {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)} ∈ V)
13 ineq1 3331 . . . . . 6 (𝑦 = 𝐡 β†’ (𝑦 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 π‘₯))
1413unieqd 3822 . . . . 5 (𝑦 = 𝐡 β†’ βˆͺ (𝑦 ∩ 𝒫 π‘₯) = βˆͺ (𝐡 ∩ 𝒫 π‘₯))
1514sseq2d 3187 . . . 4 (𝑦 = 𝐡 β†’ (π‘₯ βŠ† βˆͺ (𝑦 ∩ 𝒫 π‘₯) ↔ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)))
1615abbidv 2295 . . 3 (𝑦 = 𝐡 β†’ {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝑦 ∩ 𝒫 π‘₯)} = {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)})
17 df-topgen 12714 . . 3 topGen = (𝑦 ∈ V ↦ {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝑦 ∩ 𝒫 π‘₯)})
1816, 17fvmptg 5594 . 2 ((𝐡 ∈ V ∧ {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)} ∈ V) β†’ (topGenβ€˜π΅) = {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)})
191, 12, 18syl2anc 411 1 (𝐡 ∈ 𝑉 β†’ (topGenβ€˜π΅) = {π‘₯ ∣ π‘₯ βŠ† βˆͺ (𝐡 ∩ 𝒫 π‘₯)})
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  {cab 2163  Vcvv 2739   ∩ cin 3130   βŠ† wss 3131  π’« cpw 3577  βˆͺ cuni 3811  β€˜cfv 5218  topGenctg 12708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-topgen 12714
This theorem is referenced by:  tgvalex  12717  tgval2  13636  eltg  13637
  Copyright terms: Public domain W3C validator