| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgval | GIF version | ||
| Description: The topology generated by a basis. See also tgval2 14710 and tgval3 14717. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| tgval | ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 2 | uniexg 4527 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
| 3 | abssexg 4265 | . . 3 ⊢ (∪ 𝐵 ∈ V → {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∈ V) | |
| 4 | uniin 3907 | . . . . . . 7 ⊢ ∪ (𝐵 ∩ 𝒫 𝑥) ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥) | |
| 5 | sstr 3232 | . . . . . . 7 ⊢ ((𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) ∧ ∪ (𝐵 ∩ 𝒫 𝑥) ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) → 𝑥 ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) | |
| 6 | 4, 5 | mpan2 425 | . . . . . 6 ⊢ (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) |
| 7 | ssin 3426 | . . . . . 6 ⊢ ((𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥) ↔ 𝑥 ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) | |
| 8 | 6, 7 | sylibr 134 | . . . . 5 ⊢ (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)) |
| 9 | 8 | ss2abi 3296 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} |
| 10 | ssexg 4222 | . . . 4 ⊢ (({𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∧ {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∈ V) → {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) | |
| 11 | 9, 10 | mpan 424 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∈ V → {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) |
| 12 | 2, 3, 11 | 3syl 17 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) |
| 13 | ineq1 3398 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥)) | |
| 14 | 13 | unieqd 3898 | . . . . 5 ⊢ (𝑦 = 𝐵 → ∪ (𝑦 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑥)) |
| 15 | 14 | sseq2d 3254 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑥 ⊆ ∪ (𝑦 ∩ 𝒫 𝑥) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
| 16 | 15 | abbidv 2347 | . . 3 ⊢ (𝑦 = 𝐵 → {𝑥 ∣ 𝑥 ⊆ ∪ (𝑦 ∩ 𝒫 𝑥)} = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
| 17 | df-topgen 13279 | . . 3 ⊢ topGen = (𝑦 ∈ V ↦ {𝑥 ∣ 𝑥 ⊆ ∪ (𝑦 ∩ 𝒫 𝑥)}) | |
| 18 | 16, 17 | fvmptg 5703 | . 2 ⊢ ((𝐵 ∈ V ∧ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
| 19 | 1, 12, 18 | syl2anc 411 | 1 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 Vcvv 2799 ∩ cin 3196 ⊆ wss 3197 𝒫 cpw 3649 ∪ cuni 3887 ‘cfv 5314 topGenctg 13273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-topgen 13279 |
| This theorem is referenced by: tgvalex 13282 tgval2 14710 eltg 14711 |
| Copyright terms: Public domain | W3C validator |