| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgval | GIF version | ||
| Description: The topology generated by a basis. See also tgval2 14287 and tgval3 14294. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| tgval | ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 2 | uniexg 4474 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
| 3 | abssexg 4215 | . . 3 ⊢ (∪ 𝐵 ∈ V → {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∈ V) | |
| 4 | uniin 3859 | . . . . . . 7 ⊢ ∪ (𝐵 ∩ 𝒫 𝑥) ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥) | |
| 5 | sstr 3191 | . . . . . . 7 ⊢ ((𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) ∧ ∪ (𝐵 ∩ 𝒫 𝑥) ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) → 𝑥 ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) | |
| 6 | 4, 5 | mpan2 425 | . . . . . 6 ⊢ (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) |
| 7 | ssin 3385 | . . . . . 6 ⊢ ((𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥) ↔ 𝑥 ⊆ (∪ 𝐵 ∩ ∪ 𝒫 𝑥)) | |
| 8 | 6, 7 | sylibr 134 | . . . . 5 ⊢ (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)) |
| 9 | 8 | ss2abi 3255 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} |
| 10 | ssexg 4172 | . . . 4 ⊢ (({𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∧ {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∈ V) → {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) | |
| 11 | 9, 10 | mpan 424 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥)} ∈ V → {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) |
| 12 | 2, 3, 11 | 3syl 17 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) |
| 13 | ineq1 3357 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥)) | |
| 14 | 13 | unieqd 3850 | . . . . 5 ⊢ (𝑦 = 𝐵 → ∪ (𝑦 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑥)) |
| 15 | 14 | sseq2d 3213 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑥 ⊆ ∪ (𝑦 ∩ 𝒫 𝑥) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
| 16 | 15 | abbidv 2314 | . . 3 ⊢ (𝑦 = 𝐵 → {𝑥 ∣ 𝑥 ⊆ ∪ (𝑦 ∩ 𝒫 𝑥)} = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
| 17 | df-topgen 12931 | . . 3 ⊢ topGen = (𝑦 ∈ V ↦ {𝑥 ∣ 𝑥 ⊆ ∪ (𝑦 ∩ 𝒫 𝑥)}) | |
| 18 | 16, 17 | fvmptg 5637 | . 2 ⊢ ((𝐵 ∈ V ∧ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ∈ V) → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
| 19 | 1, 12, 18 | syl2anc 411 | 1 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {cab 2182 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 𝒫 cpw 3605 ∪ cuni 3839 ‘cfv 5258 topGenctg 12925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-topgen 12931 |
| This theorem is referenced by: tgvalex 12934 tgval2 14287 eltg 14288 |
| Copyright terms: Public domain | W3C validator |