ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ptex GIF version

Theorem ptex 12713
Description: Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.)
Assertion
Ref Expression
ptex (𝐹 ∈ 𝑉 β†’ (∏tβ€˜πΉ) ∈ V)

Proof of Theorem ptex
Dummy variables 𝑓 𝑔 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pt 12710 . . 3 ∏t = (𝑓 ∈ V ↦ (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝑓 ∧ βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦))}))
2 dmeq 4828 . . . . . . . . 9 (𝑓 = 𝐹 β†’ dom 𝑓 = dom 𝐹)
32fneq2d 5308 . . . . . . . 8 (𝑓 = 𝐹 β†’ (𝑔 Fn dom 𝑓 ↔ 𝑔 Fn dom 𝐹))
4 fveq1 5515 . . . . . . . . . 10 (𝑓 = 𝐹 β†’ (π‘“β€˜π‘¦) = (πΉβ€˜π‘¦))
54eleq2d 2247 . . . . . . . . 9 (𝑓 = 𝐹 β†’ ((π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ↔ (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦)))
62, 5raleqbidv 2685 . . . . . . . 8 (𝑓 = 𝐹 β†’ (βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ↔ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦)))
72difeq1d 3253 . . . . . . . . . 10 (𝑓 = 𝐹 β†’ (dom 𝑓 βˆ– 𝑧) = (dom 𝐹 βˆ– 𝑧))
84unieqd 3821 . . . . . . . . . . 11 (𝑓 = 𝐹 β†’ βˆͺ (π‘“β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦))
98eqeq2d 2189 . . . . . . . . . 10 (𝑓 = 𝐹 β†’ ((π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦) ↔ (π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)))
107, 9raleqbidv 2685 . . . . . . . . 9 (𝑓 = 𝐹 β†’ (βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦) ↔ βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)))
1110rexbidv 2478 . . . . . . . 8 (𝑓 = 𝐹 β†’ (βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦) ↔ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)))
123, 6, 113anbi123d 1312 . . . . . . 7 (𝑓 = 𝐹 β†’ ((𝑔 Fn dom 𝑓 ∧ βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦)) ↔ (𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦))))
132ixpeq1d 6710 . . . . . . . 8 (𝑓 = 𝐹 β†’ X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦) = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦))
1413eqeq2d 2189 . . . . . . 7 (𝑓 = 𝐹 β†’ (π‘₯ = X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦) ↔ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦)))
1512, 14anbi12d 473 . . . . . 6 (𝑓 = 𝐹 β†’ (((𝑔 Fn dom 𝑓 ∧ βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦)) ↔ ((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦))))
1615exbidv 1825 . . . . 5 (𝑓 = 𝐹 β†’ (βˆƒπ‘”((𝑔 Fn dom 𝑓 ∧ βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦)) ↔ βˆƒπ‘”((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦))))
1716abbidv 2295 . . . 4 (𝑓 = 𝐹 β†’ {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝑓 ∧ βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦))} = {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦))})
1817fveq2d 5520 . . 3 (𝑓 = 𝐹 β†’ (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝑓 ∧ βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦))}) = (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦))}))
19 elex 2749 . . 3 (𝐹 ∈ 𝑉 β†’ 𝐹 ∈ V)
20 dmexg 4892 . . . . . . . . . 10 (𝐹 ∈ 𝑉 β†’ dom 𝐹 ∈ V)
21 vex 2741 . . . . . . . . . . . . 13 𝑔 ∈ V
22 vex 2741 . . . . . . . . . . . . 13 𝑦 ∈ V
2321, 22fvex 5536 . . . . . . . . . . . 12 (π‘”β€˜π‘¦) ∈ V
2423a1i 9 . . . . . . . . . . 11 (𝐹 ∈ 𝑉 β†’ (π‘”β€˜π‘¦) ∈ V)
2524ralrimivw 2551 . . . . . . . . . 10 (𝐹 ∈ 𝑉 β†’ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ V)
26 ixpexgg 6722 . . . . . . . . . 10 ((dom 𝐹 ∈ V ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ V) β†’ X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ V)
2720, 25, 26syl2anc 411 . . . . . . . . 9 (𝐹 ∈ 𝑉 β†’ X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ V)
2827ralrimivw 2551 . . . . . . . 8 (𝐹 ∈ 𝑉 β†’ βˆ€π‘” ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ V)
29 dfiun2g 3919 . . . . . . . 8 (βˆ€π‘” ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ V β†’ βˆͺ 𝑔 ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦) = βˆͺ {π‘₯ ∣ βˆƒπ‘” ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦)})
3028, 29syl 14 . . . . . . 7 (𝐹 ∈ 𝑉 β†’ βˆͺ 𝑔 ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦) = βˆͺ {π‘₯ ∣ βˆƒπ‘” ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦)})
31 rnexg 4893 . . . . . . . . . 10 (𝐹 ∈ 𝑉 β†’ ran 𝐹 ∈ V)
3231uniexd 4441 . . . . . . . . 9 (𝐹 ∈ 𝑉 β†’ βˆͺ ran 𝐹 ∈ V)
33 mapvalg 6658 . . . . . . . . . 10 ((βˆͺ ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) β†’ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹) = {𝑔 ∣ 𝑔:dom 𝐹⟢βˆͺ ran 𝐹})
34 mapex 6654 . . . . . . . . . . 11 ((dom 𝐹 ∈ V ∧ βˆͺ ran 𝐹 ∈ V) β†’ {𝑔 ∣ 𝑔:dom 𝐹⟢βˆͺ ran 𝐹} ∈ V)
3534ancoms 268 . . . . . . . . . 10 ((βˆͺ ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) β†’ {𝑔 ∣ 𝑔:dom 𝐹⟢βˆͺ ran 𝐹} ∈ V)
3633, 35eqeltrd 2254 . . . . . . . . 9 ((βˆͺ ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) β†’ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹) ∈ V)
3732, 20, 36syl2anc 411 . . . . . . . 8 (𝐹 ∈ 𝑉 β†’ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹) ∈ V)
38 iunexg 6120 . . . . . . . 8 (((βˆͺ ran 𝐹 β†‘π‘š dom 𝐹) ∈ V ∧ βˆ€π‘” ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ V) β†’ βˆͺ 𝑔 ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ V)
3937, 28, 38syl2anc 411 . . . . . . 7 (𝐹 ∈ 𝑉 β†’ βˆͺ 𝑔 ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ V)
4030, 39eqeltrrd 2255 . . . . . 6 (𝐹 ∈ 𝑉 β†’ βˆͺ {π‘₯ ∣ βˆƒπ‘” ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦)} ∈ V)
41 uniexb 4474 . . . . . 6 ({π‘₯ ∣ βˆƒπ‘” ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦)} ∈ V ↔ βˆͺ {π‘₯ ∣ βˆƒπ‘” ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦)} ∈ V)
4240, 41sylibr 134 . . . . 5 (𝐹 ∈ 𝑉 β†’ {π‘₯ ∣ βˆƒπ‘” ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦)} ∈ V)
43 simp1 997 . . . . . . . . . . 11 ((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) β†’ 𝑔 Fn dom 𝐹)
44 fvssunirng 5531 . . . . . . . . . . . . . . 15 (𝑦 ∈ V β†’ (πΉβ€˜π‘¦) βŠ† βˆͺ ran 𝐹)
4544elv 2742 . . . . . . . . . . . . . 14 (πΉβ€˜π‘¦) βŠ† βˆͺ ran 𝐹
4645sseli 3152 . . . . . . . . . . . . 13 ((π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) β†’ (π‘”β€˜π‘¦) ∈ βˆͺ ran 𝐹)
4746ralimi 2540 . . . . . . . . . . . 12 (βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) β†’ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ βˆͺ ran 𝐹)
48473ad2ant2 1019 . . . . . . . . . . 11 ((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) β†’ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ βˆͺ ran 𝐹)
49 ffnfv 5675 . . . . . . . . . . 11 (𝑔:dom 𝐹⟢βˆͺ ran 𝐹 ↔ (𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ βˆͺ ran 𝐹))
5043, 48, 49sylanbrc 417 . . . . . . . . . 10 ((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) β†’ 𝑔:dom 𝐹⟢βˆͺ ran 𝐹)
5132, 20elmapd 6662 . . . . . . . . . 10 (𝐹 ∈ 𝑉 β†’ (𝑔 ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹) ↔ 𝑔:dom 𝐹⟢βˆͺ ran 𝐹))
5250, 51imbitrrid 156 . . . . . . . . 9 (𝐹 ∈ 𝑉 β†’ ((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) β†’ 𝑔 ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)))
5352anim1d 336 . . . . . . . 8 (𝐹 ∈ 𝑉 β†’ (((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦)) β†’ (𝑔 ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦))))
5453eximdv 1880 . . . . . . 7 (𝐹 ∈ 𝑉 β†’ (βˆƒπ‘”((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦)) β†’ βˆƒπ‘”(𝑔 ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦))))
55 df-rex 2461 . . . . . . 7 (βˆƒπ‘” ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦) ↔ βˆƒπ‘”(𝑔 ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦)))
5654, 55imbitrrdi 162 . . . . . 6 (𝐹 ∈ 𝑉 β†’ (βˆƒπ‘”((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦)) β†’ βˆƒπ‘” ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦)))
5756ss2abdv 3229 . . . . 5 (𝐹 ∈ 𝑉 β†’ {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦))} βŠ† {π‘₯ ∣ βˆƒπ‘” ∈ (βˆͺ ran 𝐹 β†‘π‘š dom 𝐹)π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦)})
5842, 57ssexd 4144 . . . 4 (𝐹 ∈ 𝑉 β†’ {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦))} ∈ V)
59 tgvalex 12712 . . . 4 ({π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦))} ∈ V β†’ (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦))}) ∈ V)
6058, 59syl 14 . . 3 (𝐹 ∈ 𝑉 β†’ (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦))}) ∈ V)
611, 18, 19, 60fvmptd3 5610 . 2 (𝐹 ∈ 𝑉 β†’ (∏tβ€˜πΉ) = (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝐹 ∧ βˆ€π‘¦ ∈ dom 𝐹(π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝐹 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝐹(π‘”β€˜π‘¦))}))
6261, 60eqeltrd 2254 1 (𝐹 ∈ 𝑉 β†’ (∏tβ€˜πΉ) ∈ V)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ∧ w3a 978   = wceq 1353  βˆƒwex 1492   ∈ wcel 2148  {cab 2163  βˆ€wral 2455  βˆƒwrex 2456  Vcvv 2738   βˆ– cdif 3127   βŠ† wss 3130  βˆͺ cuni 3810  βˆͺ ciun 3887  dom cdm 4627  ran crn 4628   Fn wfn 5212  βŸΆwf 5213  β€˜cfv 5217  (class class class)co 5875   β†‘π‘š cmap 6648  Xcixp 6698  Fincfn 6740  topGenctg 12703  βˆtcpt 12704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-map 6650  df-ixp 6699  df-topgen 12709  df-pt 12710
This theorem is referenced by:  prdsex  12718
  Copyright terms: Public domain W3C validator