ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ptex GIF version

Theorem ptex 12952
Description: Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.)
Assertion
Ref Expression
ptex (𝐹𝑉 → (∏t𝐹) ∈ V)

Proof of Theorem ptex
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pt 12949 . . 3 t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
2 dmeq 4867 . . . . . . . . 9 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
32fneq2d 5350 . . . . . . . 8 (𝑓 = 𝐹 → (𝑔 Fn dom 𝑓𝑔 Fn dom 𝐹))
4 fveq1 5558 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
54eleq2d 2266 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑔𝑦) ∈ (𝑓𝑦) ↔ (𝑔𝑦) ∈ (𝐹𝑦)))
62, 5raleqbidv 2709 . . . . . . . 8 (𝑓 = 𝐹 → (∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦)))
72difeq1d 3281 . . . . . . . . . 10 (𝑓 = 𝐹 → (dom 𝑓𝑧) = (dom 𝐹𝑧))
84unieqd 3851 . . . . . . . . . . 11 (𝑓 = 𝐹 (𝑓𝑦) = (𝐹𝑦))
98eqeq2d 2208 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑔𝑦) = (𝑓𝑦) ↔ (𝑔𝑦) = (𝐹𝑦)))
107, 9raleqbidv 2709 . . . . . . . . 9 (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)))
1110rexbidv 2498 . . . . . . . 8 (𝑓 = 𝐹 → (∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)))
123, 6, 113anbi123d 1323 . . . . . . 7 (𝑓 = 𝐹 → ((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ↔ (𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦))))
132ixpeq1d 6771 . . . . . . . 8 (𝑓 = 𝐹X𝑦 ∈ dom 𝑓(𝑔𝑦) = X𝑦 ∈ dom 𝐹(𝑔𝑦))
1413eqeq2d 2208 . . . . . . 7 (𝑓 = 𝐹 → (𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦) ↔ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)))
1512, 14anbi12d 473 . . . . . 6 (𝑓 = 𝐹 → (((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
1615exbidv 1839 . . . . 5 (𝑓 = 𝐹 → (∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
1716abbidv 2314 . . . 4 (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))})
1817fveq2d 5563 . . 3 (𝑓 = 𝐹 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}))
19 elex 2774 . . 3 (𝐹𝑉𝐹 ∈ V)
20 dmexg 4931 . . . . . . . . . 10 (𝐹𝑉 → dom 𝐹 ∈ V)
21 vex 2766 . . . . . . . . . . . . 13 𝑔 ∈ V
22 vex 2766 . . . . . . . . . . . . 13 𝑦 ∈ V
2321, 22fvex 5579 . . . . . . . . . . . 12 (𝑔𝑦) ∈ V
2423a1i 9 . . . . . . . . . . 11 (𝐹𝑉 → (𝑔𝑦) ∈ V)
2524ralrimivw 2571 . . . . . . . . . 10 (𝐹𝑉 → ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
26 ixpexgg 6783 . . . . . . . . . 10 ((dom 𝐹 ∈ V ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V) → X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
2720, 25, 26syl2anc 411 . . . . . . . . 9 (𝐹𝑉X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
2827ralrimivw 2571 . . . . . . . 8 (𝐹𝑉 → ∀𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
29 dfiun2g 3949 . . . . . . . 8 (∀𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V → 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) = {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)})
3028, 29syl 14 . . . . . . 7 (𝐹𝑉 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) = {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)})
31 rnexg 4932 . . . . . . . . . 10 (𝐹𝑉 → ran 𝐹 ∈ V)
3231uniexd 4476 . . . . . . . . 9 (𝐹𝑉 ran 𝐹 ∈ V)
33 mapvalg 6719 . . . . . . . . . 10 (( ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → ( ran 𝐹𝑚 dom 𝐹) = {𝑔𝑔:dom 𝐹 ran 𝐹})
34 mapex 6715 . . . . . . . . . . 11 ((dom 𝐹 ∈ V ∧ ran 𝐹 ∈ V) → {𝑔𝑔:dom 𝐹 ran 𝐹} ∈ V)
3534ancoms 268 . . . . . . . . . 10 (( ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → {𝑔𝑔:dom 𝐹 ran 𝐹} ∈ V)
3633, 35eqeltrd 2273 . . . . . . . . 9 (( ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → ( ran 𝐹𝑚 dom 𝐹) ∈ V)
3732, 20, 36syl2anc 411 . . . . . . . 8 (𝐹𝑉 → ( ran 𝐹𝑚 dom 𝐹) ∈ V)
38 iunexg 6178 . . . . . . . 8 ((( ran 𝐹𝑚 dom 𝐹) ∈ V ∧ ∀𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V) → 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
3937, 28, 38syl2anc 411 . . . . . . 7 (𝐹𝑉 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
4030, 39eqeltrrd 2274 . . . . . 6 (𝐹𝑉 {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V)
41 uniexb 4509 . . . . . 6 ({𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V ↔ {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V)
4240, 41sylibr 134 . . . . 5 (𝐹𝑉 → {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V)
43 simp1 999 . . . . . . . . . . 11 ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → 𝑔 Fn dom 𝐹)
44 fvssunirng 5574 . . . . . . . . . . . . . . 15 (𝑦 ∈ V → (𝐹𝑦) ⊆ ran 𝐹)
4544elv 2767 . . . . . . . . . . . . . 14 (𝐹𝑦) ⊆ ran 𝐹
4645sseli 3180 . . . . . . . . . . . . 13 ((𝑔𝑦) ∈ (𝐹𝑦) → (𝑔𝑦) ∈ ran 𝐹)
4746ralimi 2560 . . . . . . . . . . . 12 (∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ ran 𝐹)
48473ad2ant2 1021 . . . . . . . . . . 11 ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ ran 𝐹)
49 ffnfv 5721 . . . . . . . . . . 11 (𝑔:dom 𝐹 ran 𝐹 ↔ (𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ ran 𝐹))
5043, 48, 49sylanbrc 417 . . . . . . . . . 10 ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → 𝑔:dom 𝐹 ran 𝐹)
5132, 20elmapd 6723 . . . . . . . . . 10 (𝐹𝑉 → (𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ↔ 𝑔:dom 𝐹 ran 𝐹))
5250, 51imbitrrid 156 . . . . . . . . 9 (𝐹𝑉 → ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)))
5352anim1d 336 . . . . . . . 8 (𝐹𝑉 → (((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)) → (𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
5453eximdv 1894 . . . . . . 7 (𝐹𝑉 → (∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)) → ∃𝑔(𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
55 df-rex 2481 . . . . . . 7 (∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦) ↔ ∃𝑔(𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)))
5654, 55imbitrrdi 162 . . . . . 6 (𝐹𝑉 → (∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)) → ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)))
5756ss2abdv 3257 . . . . 5 (𝐹𝑉 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))} ⊆ {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)})
5842, 57ssexd 4174 . . . 4 (𝐹𝑉 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))} ∈ V)
59 tgvalex 12951 . . . 4 ({𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))} ∈ V → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}) ∈ V)
6058, 59syl 14 . . 3 (𝐹𝑉 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}) ∈ V)
611, 18, 19, 60fvmptd3 5656 . 2 (𝐹𝑉 → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}))
6261, 60eqeltrd 2273 1 (𝐹𝑉 → (∏t𝐹) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wral 2475  wrex 2476  Vcvv 2763  cdif 3154  wss 3157   cuni 3840   ciun 3917  dom cdm 4664  ran crn 4665   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5923  𝑚 cmap 6709  Xcixp 6759  Fincfn 6801  topGenctg 12942  tcpt 12943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5926  df-oprab 5927  df-mpo 5928  df-map 6711  df-ixp 6760  df-topgen 12948  df-pt 12949
This theorem is referenced by:  prdsex  12957  prdsval  12961  prdsbaslemss  12962  psrval  14246  fnpsr  14247  psrbasg  14253  psrplusgg  14256
  Copyright terms: Public domain W3C validator