ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ptex GIF version

Theorem ptex 13067
Description: Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.)
Assertion
Ref Expression
ptex (𝐹𝑉 → (∏t𝐹) ∈ V)

Proof of Theorem ptex
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pt 13064 . . 3 t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
2 dmeq 4877 . . . . . . . . 9 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
32fneq2d 5364 . . . . . . . 8 (𝑓 = 𝐹 → (𝑔 Fn dom 𝑓𝑔 Fn dom 𝐹))
4 fveq1 5574 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
54eleq2d 2274 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑔𝑦) ∈ (𝑓𝑦) ↔ (𝑔𝑦) ∈ (𝐹𝑦)))
62, 5raleqbidv 2717 . . . . . . . 8 (𝑓 = 𝐹 → (∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦)))
72difeq1d 3289 . . . . . . . . . 10 (𝑓 = 𝐹 → (dom 𝑓𝑧) = (dom 𝐹𝑧))
84unieqd 3860 . . . . . . . . . . 11 (𝑓 = 𝐹 (𝑓𝑦) = (𝐹𝑦))
98eqeq2d 2216 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑔𝑦) = (𝑓𝑦) ↔ (𝑔𝑦) = (𝐹𝑦)))
107, 9raleqbidv 2717 . . . . . . . . 9 (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)))
1110rexbidv 2506 . . . . . . . 8 (𝑓 = 𝐹 → (∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)))
123, 6, 113anbi123d 1324 . . . . . . 7 (𝑓 = 𝐹 → ((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ↔ (𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦))))
132ixpeq1d 6796 . . . . . . . 8 (𝑓 = 𝐹X𝑦 ∈ dom 𝑓(𝑔𝑦) = X𝑦 ∈ dom 𝐹(𝑔𝑦))
1413eqeq2d 2216 . . . . . . 7 (𝑓 = 𝐹 → (𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦) ↔ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)))
1512, 14anbi12d 473 . . . . . 6 (𝑓 = 𝐹 → (((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
1615exbidv 1847 . . . . 5 (𝑓 = 𝐹 → (∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
1716abbidv 2322 . . . 4 (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))})
1817fveq2d 5579 . . 3 (𝑓 = 𝐹 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}))
19 elex 2782 . . 3 (𝐹𝑉𝐹 ∈ V)
20 dmexg 4941 . . . . . . . . . 10 (𝐹𝑉 → dom 𝐹 ∈ V)
21 vex 2774 . . . . . . . . . . . . 13 𝑔 ∈ V
22 vex 2774 . . . . . . . . . . . . 13 𝑦 ∈ V
2321, 22fvex 5595 . . . . . . . . . . . 12 (𝑔𝑦) ∈ V
2423a1i 9 . . . . . . . . . . 11 (𝐹𝑉 → (𝑔𝑦) ∈ V)
2524ralrimivw 2579 . . . . . . . . . 10 (𝐹𝑉 → ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
26 ixpexgg 6808 . . . . . . . . . 10 ((dom 𝐹 ∈ V ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V) → X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
2720, 25, 26syl2anc 411 . . . . . . . . 9 (𝐹𝑉X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
2827ralrimivw 2579 . . . . . . . 8 (𝐹𝑉 → ∀𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
29 dfiun2g 3958 . . . . . . . 8 (∀𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V → 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) = {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)})
3028, 29syl 14 . . . . . . 7 (𝐹𝑉 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) = {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)})
31 rnexg 4942 . . . . . . . . . 10 (𝐹𝑉 → ran 𝐹 ∈ V)
3231uniexd 4486 . . . . . . . . 9 (𝐹𝑉 ran 𝐹 ∈ V)
33 mapvalg 6744 . . . . . . . . . 10 (( ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → ( ran 𝐹𝑚 dom 𝐹) = {𝑔𝑔:dom 𝐹 ran 𝐹})
34 mapex 6740 . . . . . . . . . . 11 ((dom 𝐹 ∈ V ∧ ran 𝐹 ∈ V) → {𝑔𝑔:dom 𝐹 ran 𝐹} ∈ V)
3534ancoms 268 . . . . . . . . . 10 (( ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → {𝑔𝑔:dom 𝐹 ran 𝐹} ∈ V)
3633, 35eqeltrd 2281 . . . . . . . . 9 (( ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → ( ran 𝐹𝑚 dom 𝐹) ∈ V)
3732, 20, 36syl2anc 411 . . . . . . . 8 (𝐹𝑉 → ( ran 𝐹𝑚 dom 𝐹) ∈ V)
38 iunexg 6203 . . . . . . . 8 ((( ran 𝐹𝑚 dom 𝐹) ∈ V ∧ ∀𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V) → 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
3937, 28, 38syl2anc 411 . . . . . . 7 (𝐹𝑉 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
4030, 39eqeltrrd 2282 . . . . . 6 (𝐹𝑉 {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V)
41 uniexb 4519 . . . . . 6 ({𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V ↔ {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V)
4240, 41sylibr 134 . . . . 5 (𝐹𝑉 → {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V)
43 simp1 999 . . . . . . . . . . 11 ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → 𝑔 Fn dom 𝐹)
44 fvssunirng 5590 . . . . . . . . . . . . . . 15 (𝑦 ∈ V → (𝐹𝑦) ⊆ ran 𝐹)
4544elv 2775 . . . . . . . . . . . . . 14 (𝐹𝑦) ⊆ ran 𝐹
4645sseli 3188 . . . . . . . . . . . . 13 ((𝑔𝑦) ∈ (𝐹𝑦) → (𝑔𝑦) ∈ ran 𝐹)
4746ralimi 2568 . . . . . . . . . . . 12 (∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ ran 𝐹)
48473ad2ant2 1021 . . . . . . . . . . 11 ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ ran 𝐹)
49 ffnfv 5737 . . . . . . . . . . 11 (𝑔:dom 𝐹 ran 𝐹 ↔ (𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ ran 𝐹))
5043, 48, 49sylanbrc 417 . . . . . . . . . 10 ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → 𝑔:dom 𝐹 ran 𝐹)
5132, 20elmapd 6748 . . . . . . . . . 10 (𝐹𝑉 → (𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ↔ 𝑔:dom 𝐹 ran 𝐹))
5250, 51imbitrrid 156 . . . . . . . . 9 (𝐹𝑉 → ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)))
5352anim1d 336 . . . . . . . 8 (𝐹𝑉 → (((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)) → (𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
5453eximdv 1902 . . . . . . 7 (𝐹𝑉 → (∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)) → ∃𝑔(𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
55 df-rex 2489 . . . . . . 7 (∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦) ↔ ∃𝑔(𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)))
5654, 55imbitrrdi 162 . . . . . 6 (𝐹𝑉 → (∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)) → ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)))
5756ss2abdv 3265 . . . . 5 (𝐹𝑉 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))} ⊆ {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)})
5842, 57ssexd 4183 . . . 4 (𝐹𝑉 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))} ∈ V)
59 tgvalex 13066 . . . 4 ({𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))} ∈ V → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}) ∈ V)
6058, 59syl 14 . . 3 (𝐹𝑉 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}) ∈ V)
611, 18, 19, 60fvmptd3 5672 . 2 (𝐹𝑉 → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}))
6261, 60eqeltrd 2281 1 (𝐹𝑉 → (∏t𝐹) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wex 1514  wcel 2175  {cab 2190  wral 2483  wrex 2484  Vcvv 2771  cdif 3162  wss 3165   cuni 3849   ciun 3926  dom cdm 4674  ran crn 4675   Fn wfn 5265  wf 5266  cfv 5270  (class class class)co 5943  𝑚 cmap 6734  Xcixp 6784  Fincfn 6826  topGenctg 13057  tcpt 13058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-map 6736  df-ixp 6785  df-topgen 13063  df-pt 13064
This theorem is referenced by:  prdsex  13072  prdsval  13076  prdsbaslemss  13077  psrval  14399  fnpsr  14400  psrbasg  14407  psrplusgg  14411
  Copyright terms: Public domain W3C validator