ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ptex GIF version

Theorem ptex 13211
Description: Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.)
Assertion
Ref Expression
ptex (𝐹𝑉 → (∏t𝐹) ∈ V)

Proof of Theorem ptex
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pt 13208 . . 3 t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
2 dmeq 4897 . . . . . . . . 9 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
32fneq2d 5384 . . . . . . . 8 (𝑓 = 𝐹 → (𝑔 Fn dom 𝑓𝑔 Fn dom 𝐹))
4 fveq1 5598 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
54eleq2d 2277 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑔𝑦) ∈ (𝑓𝑦) ↔ (𝑔𝑦) ∈ (𝐹𝑦)))
62, 5raleqbidv 2721 . . . . . . . 8 (𝑓 = 𝐹 → (∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦)))
72difeq1d 3298 . . . . . . . . . 10 (𝑓 = 𝐹 → (dom 𝑓𝑧) = (dom 𝐹𝑧))
84unieqd 3875 . . . . . . . . . . 11 (𝑓 = 𝐹 (𝑓𝑦) = (𝐹𝑦))
98eqeq2d 2219 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑔𝑦) = (𝑓𝑦) ↔ (𝑔𝑦) = (𝐹𝑦)))
107, 9raleqbidv 2721 . . . . . . . . 9 (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)))
1110rexbidv 2509 . . . . . . . 8 (𝑓 = 𝐹 → (∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)))
123, 6, 113anbi123d 1325 . . . . . . 7 (𝑓 = 𝐹 → ((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ↔ (𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦))))
132ixpeq1d 6820 . . . . . . . 8 (𝑓 = 𝐹X𝑦 ∈ dom 𝑓(𝑔𝑦) = X𝑦 ∈ dom 𝐹(𝑔𝑦))
1413eqeq2d 2219 . . . . . . 7 (𝑓 = 𝐹 → (𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦) ↔ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)))
1512, 14anbi12d 473 . . . . . 6 (𝑓 = 𝐹 → (((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
1615exbidv 1849 . . . . 5 (𝑓 = 𝐹 → (∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
1716abbidv 2325 . . . 4 (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))})
1817fveq2d 5603 . . 3 (𝑓 = 𝐹 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}))
19 elex 2788 . . 3 (𝐹𝑉𝐹 ∈ V)
20 dmexg 4961 . . . . . . . . . 10 (𝐹𝑉 → dom 𝐹 ∈ V)
21 vex 2779 . . . . . . . . . . . . 13 𝑔 ∈ V
22 vex 2779 . . . . . . . . . . . . 13 𝑦 ∈ V
2321, 22fvex 5619 . . . . . . . . . . . 12 (𝑔𝑦) ∈ V
2423a1i 9 . . . . . . . . . . 11 (𝐹𝑉 → (𝑔𝑦) ∈ V)
2524ralrimivw 2582 . . . . . . . . . 10 (𝐹𝑉 → ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
26 ixpexgg 6832 . . . . . . . . . 10 ((dom 𝐹 ∈ V ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V) → X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
2720, 25, 26syl2anc 411 . . . . . . . . 9 (𝐹𝑉X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
2827ralrimivw 2582 . . . . . . . 8 (𝐹𝑉 → ∀𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
29 dfiun2g 3973 . . . . . . . 8 (∀𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V → 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) = {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)})
3028, 29syl 14 . . . . . . 7 (𝐹𝑉 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) = {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)})
31 rnexg 4962 . . . . . . . . . 10 (𝐹𝑉 → ran 𝐹 ∈ V)
3231uniexd 4505 . . . . . . . . 9 (𝐹𝑉 ran 𝐹 ∈ V)
33 mapvalg 6768 . . . . . . . . . 10 (( ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → ( ran 𝐹𝑚 dom 𝐹) = {𝑔𝑔:dom 𝐹 ran 𝐹})
34 mapex 6764 . . . . . . . . . . 11 ((dom 𝐹 ∈ V ∧ ran 𝐹 ∈ V) → {𝑔𝑔:dom 𝐹 ran 𝐹} ∈ V)
3534ancoms 268 . . . . . . . . . 10 (( ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → {𝑔𝑔:dom 𝐹 ran 𝐹} ∈ V)
3633, 35eqeltrd 2284 . . . . . . . . 9 (( ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → ( ran 𝐹𝑚 dom 𝐹) ∈ V)
3732, 20, 36syl2anc 411 . . . . . . . 8 (𝐹𝑉 → ( ran 𝐹𝑚 dom 𝐹) ∈ V)
38 iunexg 6227 . . . . . . . 8 ((( ran 𝐹𝑚 dom 𝐹) ∈ V ∧ ∀𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V) → 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
3937, 28, 38syl2anc 411 . . . . . . 7 (𝐹𝑉 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
4030, 39eqeltrrd 2285 . . . . . 6 (𝐹𝑉 {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V)
41 uniexb 4538 . . . . . 6 ({𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V ↔ {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V)
4240, 41sylibr 134 . . . . 5 (𝐹𝑉 → {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V)
43 simp1 1000 . . . . . . . . . . 11 ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → 𝑔 Fn dom 𝐹)
44 fvssunirng 5614 . . . . . . . . . . . . . . 15 (𝑦 ∈ V → (𝐹𝑦) ⊆ ran 𝐹)
4544elv 2780 . . . . . . . . . . . . . 14 (𝐹𝑦) ⊆ ran 𝐹
4645sseli 3197 . . . . . . . . . . . . 13 ((𝑔𝑦) ∈ (𝐹𝑦) → (𝑔𝑦) ∈ ran 𝐹)
4746ralimi 2571 . . . . . . . . . . . 12 (∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ ran 𝐹)
48473ad2ant2 1022 . . . . . . . . . . 11 ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ ran 𝐹)
49 ffnfv 5761 . . . . . . . . . . 11 (𝑔:dom 𝐹 ran 𝐹 ↔ (𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ ran 𝐹))
5043, 48, 49sylanbrc 417 . . . . . . . . . 10 ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → 𝑔:dom 𝐹 ran 𝐹)
5132, 20elmapd 6772 . . . . . . . . . 10 (𝐹𝑉 → (𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ↔ 𝑔:dom 𝐹 ran 𝐹))
5250, 51imbitrrid 156 . . . . . . . . 9 (𝐹𝑉 → ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)))
5352anim1d 336 . . . . . . . 8 (𝐹𝑉 → (((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)) → (𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
5453eximdv 1904 . . . . . . 7 (𝐹𝑉 → (∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)) → ∃𝑔(𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
55 df-rex 2492 . . . . . . 7 (∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦) ↔ ∃𝑔(𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)))
5654, 55imbitrrdi 162 . . . . . 6 (𝐹𝑉 → (∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)) → ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)))
5756ss2abdv 3274 . . . . 5 (𝐹𝑉 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))} ⊆ {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)})
5842, 57ssexd 4200 . . . 4 (𝐹𝑉 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))} ∈ V)
59 tgvalex 13210 . . . 4 ({𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))} ∈ V → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}) ∈ V)
6058, 59syl 14 . . 3 (𝐹𝑉 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}) ∈ V)
611, 18, 19, 60fvmptd3 5696 . 2 (𝐹𝑉 → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}))
6261, 60eqeltrd 2284 1 (𝐹𝑉 → (∏t𝐹) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wex 1516  wcel 2178  {cab 2193  wral 2486  wrex 2487  Vcvv 2776  cdif 3171  wss 3174   cuni 3864   ciun 3941  dom cdm 4693  ran crn 4694   Fn wfn 5285  wf 5286  cfv 5290  (class class class)co 5967  𝑚 cmap 6758  Xcixp 6808  Fincfn 6850  topGenctg 13201  tcpt 13202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-map 6760  df-ixp 6809  df-topgen 13207  df-pt 13208
This theorem is referenced by:  prdsex  13216  prdsval  13220  prdsbaslemss  13221  psrval  14543  fnpsr  14544  psrbasg  14551  psrplusgg  14555
  Copyright terms: Public domain W3C validator