Step | Hyp | Ref
| Expression |
1 | | df-pt 12710 |
. . 3
β’
βt = (π β V β¦ (topGenβ{π₯ β£ βπ((π Fn dom π β§ βπ¦ β dom π(πβπ¦) β (πβπ¦) β§ βπ§ β Fin βπ¦ β (dom π β π§)(πβπ¦) = βͺ (πβπ¦)) β§ π₯ = Xπ¦ β dom π(πβπ¦))})) |
2 | | dmeq 4828 |
. . . . . . . . 9
β’ (π = πΉ β dom π = dom πΉ) |
3 | 2 | fneq2d 5308 |
. . . . . . . 8
β’ (π = πΉ β (π Fn dom π β π Fn dom πΉ)) |
4 | | fveq1 5515 |
. . . . . . . . . 10
β’ (π = πΉ β (πβπ¦) = (πΉβπ¦)) |
5 | 4 | eleq2d 2247 |
. . . . . . . . 9
β’ (π = πΉ β ((πβπ¦) β (πβπ¦) β (πβπ¦) β (πΉβπ¦))) |
6 | 2, 5 | raleqbidv 2685 |
. . . . . . . 8
β’ (π = πΉ β (βπ¦ β dom π(πβπ¦) β (πβπ¦) β βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦))) |
7 | 2 | difeq1d 3253 |
. . . . . . . . . 10
β’ (π = πΉ β (dom π β π§) = (dom πΉ β π§)) |
8 | 4 | unieqd 3821 |
. . . . . . . . . . 11
β’ (π = πΉ β βͺ (πβπ¦) = βͺ (πΉβπ¦)) |
9 | 8 | eqeq2d 2189 |
. . . . . . . . . 10
β’ (π = πΉ β ((πβπ¦) = βͺ (πβπ¦) β (πβπ¦) = βͺ (πΉβπ¦))) |
10 | 7, 9 | raleqbidv 2685 |
. . . . . . . . 9
β’ (π = πΉ β (βπ¦ β (dom π β π§)(πβπ¦) = βͺ (πβπ¦) β βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦))) |
11 | 10 | rexbidv 2478 |
. . . . . . . 8
β’ (π = πΉ β (βπ§ β Fin βπ¦ β (dom π β π§)(πβπ¦) = βͺ (πβπ¦) β βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦))) |
12 | 3, 6, 11 | 3anbi123d 1312 |
. . . . . . 7
β’ (π = πΉ β ((π Fn dom π β§ βπ¦ β dom π(πβπ¦) β (πβπ¦) β§ βπ§ β Fin βπ¦ β (dom π β π§)(πβπ¦) = βͺ (πβπ¦)) β (π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)))) |
13 | 2 | ixpeq1d 6710 |
. . . . . . . 8
β’ (π = πΉ β Xπ¦ β dom π(πβπ¦) = Xπ¦ β dom πΉ(πβπ¦)) |
14 | 13 | eqeq2d 2189 |
. . . . . . 7
β’ (π = πΉ β (π₯ = Xπ¦ β dom π(πβπ¦) β π₯ = Xπ¦ β dom πΉ(πβπ¦))) |
15 | 12, 14 | anbi12d 473 |
. . . . . 6
β’ (π = πΉ β (((π Fn dom π β§ βπ¦ β dom π(πβπ¦) β (πβπ¦) β§ βπ§ β Fin βπ¦ β (dom π β π§)(πβπ¦) = βͺ (πβπ¦)) β§ π₯ = Xπ¦ β dom π(πβπ¦)) β ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦)))) |
16 | 15 | exbidv 1825 |
. . . . 5
β’ (π = πΉ β (βπ((π Fn dom π β§ βπ¦ β dom π(πβπ¦) β (πβπ¦) β§ βπ§ β Fin βπ¦ β (dom π β π§)(πβπ¦) = βͺ (πβπ¦)) β§ π₯ = Xπ¦ β dom π(πβπ¦)) β βπ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦)))) |
17 | 16 | abbidv 2295 |
. . . 4
β’ (π = πΉ β {π₯ β£ βπ((π Fn dom π β§ βπ¦ β dom π(πβπ¦) β (πβπ¦) β§ βπ§ β Fin βπ¦ β (dom π β π§)(πβπ¦) = βͺ (πβπ¦)) β§ π₯ = Xπ¦ β dom π(πβπ¦))} = {π₯ β£ βπ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦))}) |
18 | 17 | fveq2d 5520 |
. . 3
β’ (π = πΉ β (topGenβ{π₯ β£ βπ((π Fn dom π β§ βπ¦ β dom π(πβπ¦) β (πβπ¦) β§ βπ§ β Fin βπ¦ β (dom π β π§)(πβπ¦) = βͺ (πβπ¦)) β§ π₯ = Xπ¦ β dom π(πβπ¦))}) = (topGenβ{π₯ β£ βπ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦))})) |
19 | | elex 2749 |
. . 3
β’ (πΉ β π β πΉ β V) |
20 | | dmexg 4892 |
. . . . . . . . . 10
β’ (πΉ β π β dom πΉ β V) |
21 | | vex 2741 |
. . . . . . . . . . . . 13
β’ π β V |
22 | | vex 2741 |
. . . . . . . . . . . . 13
β’ π¦ β V |
23 | 21, 22 | fvex 5536 |
. . . . . . . . . . . 12
β’ (πβπ¦) β V |
24 | 23 | a1i 9 |
. . . . . . . . . . 11
β’ (πΉ β π β (πβπ¦) β V) |
25 | 24 | ralrimivw 2551 |
. . . . . . . . . 10
β’ (πΉ β π β βπ¦ β dom πΉ(πβπ¦) β V) |
26 | | ixpexgg 6722 |
. . . . . . . . . 10
β’ ((dom
πΉ β V β§
βπ¦ β dom πΉ(πβπ¦) β V) β Xπ¦ β
dom πΉ(πβπ¦) β V) |
27 | 20, 25, 26 | syl2anc 411 |
. . . . . . . . 9
β’ (πΉ β π β Xπ¦ β dom πΉ(πβπ¦) β V) |
28 | 27 | ralrimivw 2551 |
. . . . . . . 8
β’ (πΉ β π β βπ β (βͺ ran
πΉ
βπ dom πΉ)Xπ¦ β dom πΉ(πβπ¦) β V) |
29 | | dfiun2g 3919 |
. . . . . . . 8
β’
(βπ β
(βͺ ran πΉ βπ dom πΉ)Xπ¦ β dom πΉ(πβπ¦) β V β βͺ π β (βͺ ran
πΉ
βπ dom πΉ)Xπ¦ β dom πΉ(πβπ¦) = βͺ {π₯ β£ βπ β (βͺ ran πΉ βπ dom πΉ)π₯ = Xπ¦ β dom πΉ(πβπ¦)}) |
30 | 28, 29 | syl 14 |
. . . . . . 7
β’ (πΉ β π β βͺ
π β (βͺ ran πΉ βπ dom πΉ)Xπ¦ β dom πΉ(πβπ¦) = βͺ {π₯ β£ βπ β (βͺ ran πΉ βπ dom πΉ)π₯ = Xπ¦ β dom πΉ(πβπ¦)}) |
31 | | rnexg 4893 |
. . . . . . . . . 10
β’ (πΉ β π β ran πΉ β V) |
32 | 31 | uniexd 4441 |
. . . . . . . . 9
β’ (πΉ β π β βͺ ran
πΉ β
V) |
33 | | mapvalg 6658 |
. . . . . . . . . 10
β’ ((βͺ ran πΉ β V β§ dom πΉ β V) β (βͺ ran πΉ βπ dom πΉ) = {π β£ π:dom πΉβΆβͺ ran
πΉ}) |
34 | | mapex 6654 |
. . . . . . . . . . 11
β’ ((dom
πΉ β V β§ βͺ ran πΉ β V) β {π β£ π:dom πΉβΆβͺ ran
πΉ} β
V) |
35 | 34 | ancoms 268 |
. . . . . . . . . 10
β’ ((βͺ ran πΉ β V β§ dom πΉ β V) β {π β£ π:dom πΉβΆβͺ ran
πΉ} β
V) |
36 | 33, 35 | eqeltrd 2254 |
. . . . . . . . 9
β’ ((βͺ ran πΉ β V β§ dom πΉ β V) β (βͺ ran πΉ βπ dom πΉ) β V) |
37 | 32, 20, 36 | syl2anc 411 |
. . . . . . . 8
β’ (πΉ β π β (βͺ ran
πΉ
βπ dom πΉ) β V) |
38 | | iunexg 6120 |
. . . . . . . 8
β’ (((βͺ ran πΉ βπ dom πΉ) β V β§ βπ β (βͺ ran πΉ βπ dom πΉ)Xπ¦ β dom πΉ(πβπ¦) β V) β βͺ π β (βͺ ran
πΉ
βπ dom πΉ)Xπ¦ β dom πΉ(πβπ¦) β V) |
39 | 37, 28, 38 | syl2anc 411 |
. . . . . . 7
β’ (πΉ β π β βͺ
π β (βͺ ran πΉ βπ dom πΉ)Xπ¦ β dom πΉ(πβπ¦) β V) |
40 | 30, 39 | eqeltrrd 2255 |
. . . . . 6
β’ (πΉ β π β βͺ {π₯ β£ βπ β (βͺ ran πΉ βπ dom πΉ)π₯ = Xπ¦ β dom πΉ(πβπ¦)} β V) |
41 | | uniexb 4474 |
. . . . . 6
β’ ({π₯ β£ βπ β (βͺ ran πΉ βπ dom πΉ)π₯ = Xπ¦ β dom πΉ(πβπ¦)} β V β βͺ {π₯
β£ βπ β
(βͺ ran πΉ βπ dom πΉ)π₯ = Xπ¦ β dom πΉ(πβπ¦)} β V) |
42 | 40, 41 | sylibr 134 |
. . . . 5
β’ (πΉ β π β {π₯ β£ βπ β (βͺ ran
πΉ
βπ dom πΉ)π₯ = Xπ¦ β dom πΉ(πβπ¦)} β V) |
43 | | simp1 997 |
. . . . . . . . . . 11
β’ ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β π Fn dom πΉ) |
44 | | fvssunirng 5531 |
. . . . . . . . . . . . . . 15
β’ (π¦ β V β (πΉβπ¦) β βͺ ran
πΉ) |
45 | 44 | elv 2742 |
. . . . . . . . . . . . . 14
β’ (πΉβπ¦) β βͺ ran
πΉ |
46 | 45 | sseli 3152 |
. . . . . . . . . . . . 13
β’ ((πβπ¦) β (πΉβπ¦) β (πβπ¦) β βͺ ran
πΉ) |
47 | 46 | ralimi 2540 |
. . . . . . . . . . . 12
β’
(βπ¦ β
dom πΉ(πβπ¦) β (πΉβπ¦) β βπ¦ β dom πΉ(πβπ¦) β βͺ ran
πΉ) |
48 | 47 | 3ad2ant2 1019 |
. . . . . . . . . . 11
β’ ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β βπ¦ β dom πΉ(πβπ¦) β βͺ ran
πΉ) |
49 | | ffnfv 5675 |
. . . . . . . . . . 11
β’ (π:dom πΉβΆβͺ ran
πΉ β (π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β βͺ ran
πΉ)) |
50 | 43, 48, 49 | sylanbrc 417 |
. . . . . . . . . 10
β’ ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β π:dom πΉβΆβͺ ran
πΉ) |
51 | 32, 20 | elmapd 6662 |
. . . . . . . . . 10
β’ (πΉ β π β (π β (βͺ ran
πΉ
βπ dom πΉ) β π:dom πΉβΆβͺ ran
πΉ)) |
52 | 50, 51 | imbitrrid 156 |
. . . . . . . . 9
β’ (πΉ β π β ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β π β (βͺ ran
πΉ
βπ dom πΉ))) |
53 | 52 | anim1d 336 |
. . . . . . . 8
β’ (πΉ β π β (((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦)) β (π β (βͺ ran
πΉ
βπ dom πΉ) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦)))) |
54 | 53 | eximdv 1880 |
. . . . . . 7
β’ (πΉ β π β (βπ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦)) β βπ(π β (βͺ ran
πΉ
βπ dom πΉ) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦)))) |
55 | | df-rex 2461 |
. . . . . . 7
β’
(βπ β
(βͺ ran πΉ βπ dom πΉ)π₯ = Xπ¦ β dom πΉ(πβπ¦) β βπ(π β (βͺ ran
πΉ
βπ dom πΉ) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦))) |
56 | 54, 55 | imbitrrdi 162 |
. . . . . 6
β’ (πΉ β π β (βπ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦)) β βπ β (βͺ ran
πΉ
βπ dom πΉ)π₯ = Xπ¦ β dom πΉ(πβπ¦))) |
57 | 56 | ss2abdv 3229 |
. . . . 5
β’ (πΉ β π β {π₯ β£ βπ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦))} β {π₯ β£ βπ β (βͺ ran
πΉ
βπ dom πΉ)π₯ = Xπ¦ β dom πΉ(πβπ¦)}) |
58 | 42, 57 | ssexd 4144 |
. . . 4
β’ (πΉ β π β {π₯ β£ βπ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦))} β V) |
59 | | tgvalex 12712 |
. . . 4
β’ ({π₯ β£ βπ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦))} β V β (topGenβ{π₯ β£ βπ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦))}) β V) |
60 | 58, 59 | syl 14 |
. . 3
β’ (πΉ β π β (topGenβ{π₯ β£ βπ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦))}) β V) |
61 | 1, 18, 19, 60 | fvmptd3 5610 |
. 2
β’ (πΉ β π β (βtβπΉ) = (topGenβ{π₯ β£ βπ((π Fn dom πΉ β§ βπ¦ β dom πΉ(πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (dom πΉ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β dom πΉ(πβπ¦))})) |
62 | 61, 60 | eqeltrd 2254 |
1
β’ (πΉ β π β (βtβπΉ) β V) |