ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ptex GIF version

Theorem ptex 13096
Description: Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.)
Assertion
Ref Expression
ptex (𝐹𝑉 → (∏t𝐹) ∈ V)

Proof of Theorem ptex
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pt 13093 . . 3 t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
2 dmeq 4878 . . . . . . . . 9 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
32fneq2d 5365 . . . . . . . 8 (𝑓 = 𝐹 → (𝑔 Fn dom 𝑓𝑔 Fn dom 𝐹))
4 fveq1 5575 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
54eleq2d 2275 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑔𝑦) ∈ (𝑓𝑦) ↔ (𝑔𝑦) ∈ (𝐹𝑦)))
62, 5raleqbidv 2718 . . . . . . . 8 (𝑓 = 𝐹 → (∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦)))
72difeq1d 3290 . . . . . . . . . 10 (𝑓 = 𝐹 → (dom 𝑓𝑧) = (dom 𝐹𝑧))
84unieqd 3861 . . . . . . . . . . 11 (𝑓 = 𝐹 (𝑓𝑦) = (𝐹𝑦))
98eqeq2d 2217 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑔𝑦) = (𝑓𝑦) ↔ (𝑔𝑦) = (𝐹𝑦)))
107, 9raleqbidv 2718 . . . . . . . . 9 (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)))
1110rexbidv 2507 . . . . . . . 8 (𝑓 = 𝐹 → (∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)))
123, 6, 113anbi123d 1325 . . . . . . 7 (𝑓 = 𝐹 → ((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ↔ (𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦))))
132ixpeq1d 6797 . . . . . . . 8 (𝑓 = 𝐹X𝑦 ∈ dom 𝑓(𝑔𝑦) = X𝑦 ∈ dom 𝐹(𝑔𝑦))
1413eqeq2d 2217 . . . . . . 7 (𝑓 = 𝐹 → (𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦) ↔ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)))
1512, 14anbi12d 473 . . . . . 6 (𝑓 = 𝐹 → (((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
1615exbidv 1848 . . . . 5 (𝑓 = 𝐹 → (∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
1716abbidv 2323 . . . 4 (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))})
1817fveq2d 5580 . . 3 (𝑓 = 𝐹 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}))
19 elex 2783 . . 3 (𝐹𝑉𝐹 ∈ V)
20 dmexg 4942 . . . . . . . . . 10 (𝐹𝑉 → dom 𝐹 ∈ V)
21 vex 2775 . . . . . . . . . . . . 13 𝑔 ∈ V
22 vex 2775 . . . . . . . . . . . . 13 𝑦 ∈ V
2321, 22fvex 5596 . . . . . . . . . . . 12 (𝑔𝑦) ∈ V
2423a1i 9 . . . . . . . . . . 11 (𝐹𝑉 → (𝑔𝑦) ∈ V)
2524ralrimivw 2580 . . . . . . . . . 10 (𝐹𝑉 → ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
26 ixpexgg 6809 . . . . . . . . . 10 ((dom 𝐹 ∈ V ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V) → X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
2720, 25, 26syl2anc 411 . . . . . . . . 9 (𝐹𝑉X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
2827ralrimivw 2580 . . . . . . . 8 (𝐹𝑉 → ∀𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
29 dfiun2g 3959 . . . . . . . 8 (∀𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V → 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) = {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)})
3028, 29syl 14 . . . . . . 7 (𝐹𝑉 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) = {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)})
31 rnexg 4943 . . . . . . . . . 10 (𝐹𝑉 → ran 𝐹 ∈ V)
3231uniexd 4487 . . . . . . . . 9 (𝐹𝑉 ran 𝐹 ∈ V)
33 mapvalg 6745 . . . . . . . . . 10 (( ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → ( ran 𝐹𝑚 dom 𝐹) = {𝑔𝑔:dom 𝐹 ran 𝐹})
34 mapex 6741 . . . . . . . . . . 11 ((dom 𝐹 ∈ V ∧ ran 𝐹 ∈ V) → {𝑔𝑔:dom 𝐹 ran 𝐹} ∈ V)
3534ancoms 268 . . . . . . . . . 10 (( ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → {𝑔𝑔:dom 𝐹 ran 𝐹} ∈ V)
3633, 35eqeltrd 2282 . . . . . . . . 9 (( ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → ( ran 𝐹𝑚 dom 𝐹) ∈ V)
3732, 20, 36syl2anc 411 . . . . . . . 8 (𝐹𝑉 → ( ran 𝐹𝑚 dom 𝐹) ∈ V)
38 iunexg 6204 . . . . . . . 8 ((( ran 𝐹𝑚 dom 𝐹) ∈ V ∧ ∀𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V) → 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
3937, 28, 38syl2anc 411 . . . . . . 7 (𝐹𝑉 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
4030, 39eqeltrrd 2283 . . . . . 6 (𝐹𝑉 {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V)
41 uniexb 4520 . . . . . 6 ({𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V ↔ {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V)
4240, 41sylibr 134 . . . . 5 (𝐹𝑉 → {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V)
43 simp1 1000 . . . . . . . . . . 11 ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → 𝑔 Fn dom 𝐹)
44 fvssunirng 5591 . . . . . . . . . . . . . . 15 (𝑦 ∈ V → (𝐹𝑦) ⊆ ran 𝐹)
4544elv 2776 . . . . . . . . . . . . . 14 (𝐹𝑦) ⊆ ran 𝐹
4645sseli 3189 . . . . . . . . . . . . 13 ((𝑔𝑦) ∈ (𝐹𝑦) → (𝑔𝑦) ∈ ran 𝐹)
4746ralimi 2569 . . . . . . . . . . . 12 (∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ ran 𝐹)
48473ad2ant2 1022 . . . . . . . . . . 11 ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ ran 𝐹)
49 ffnfv 5738 . . . . . . . . . . 11 (𝑔:dom 𝐹 ran 𝐹 ↔ (𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ ran 𝐹))
5043, 48, 49sylanbrc 417 . . . . . . . . . 10 ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → 𝑔:dom 𝐹 ran 𝐹)
5132, 20elmapd 6749 . . . . . . . . . 10 (𝐹𝑉 → (𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ↔ 𝑔:dom 𝐹 ran 𝐹))
5250, 51imbitrrid 156 . . . . . . . . 9 (𝐹𝑉 → ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)))
5352anim1d 336 . . . . . . . 8 (𝐹𝑉 → (((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)) → (𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
5453eximdv 1903 . . . . . . 7 (𝐹𝑉 → (∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)) → ∃𝑔(𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
55 df-rex 2490 . . . . . . 7 (∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦) ↔ ∃𝑔(𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)))
5654, 55imbitrrdi 162 . . . . . 6 (𝐹𝑉 → (∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)) → ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)))
5756ss2abdv 3266 . . . . 5 (𝐹𝑉 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))} ⊆ {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)})
5842, 57ssexd 4184 . . . 4 (𝐹𝑉 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))} ∈ V)
59 tgvalex 13095 . . . 4 ({𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))} ∈ V → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}) ∈ V)
6058, 59syl 14 . . 3 (𝐹𝑉 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}) ∈ V)
611, 18, 19, 60fvmptd3 5673 . 2 (𝐹𝑉 → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}))
6261, 60eqeltrd 2282 1 (𝐹𝑉 → (∏t𝐹) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wex 1515  wcel 2176  {cab 2191  wral 2484  wrex 2485  Vcvv 2772  cdif 3163  wss 3166   cuni 3850   ciun 3927  dom cdm 4675  ran crn 4676   Fn wfn 5266  wf 5267  cfv 5271  (class class class)co 5944  𝑚 cmap 6735  Xcixp 6785  Fincfn 6827  topGenctg 13086  tcpt 13087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-map 6737  df-ixp 6786  df-topgen 13092  df-pt 13093
This theorem is referenced by:  prdsex  13101  prdsval  13105  prdsbaslemss  13106  psrval  14428  fnpsr  14429  psrbasg  14436  psrplusgg  14440
  Copyright terms: Public domain W3C validator