| Step | Hyp | Ref
| Expression |
| 1 | | df-pt 12932 |
. . 3
⊢
∏t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))})) |
| 2 | | dmeq 4866 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) |
| 3 | 2 | fneq2d 5349 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑔 Fn dom 𝑓 ↔ 𝑔 Fn dom 𝐹)) |
| 4 | | fveq1 5557 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) |
| 5 | 4 | eleq2d 2266 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ (𝑔‘𝑦) ∈ (𝐹‘𝑦))) |
| 6 | 2, 5 | raleqbidv 2709 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦))) |
| 7 | 2 | difeq1d 3280 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (dom 𝑓 ∖ 𝑧) = (dom 𝐹 ∖ 𝑧)) |
| 8 | 4 | unieqd 3850 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → ∪ (𝑓‘𝑦) = ∪ (𝐹‘𝑦)) |
| 9 | 8 | eqeq2d 2208 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → ((𝑔‘𝑦) = ∪ (𝑓‘𝑦) ↔ (𝑔‘𝑦) = ∪ (𝐹‘𝑦))) |
| 10 | 7, 9 | raleqbidv 2709 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦) ↔ ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) |
| 11 | 10 | rexbidv 2498 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦) ↔ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) |
| 12 | 3, 6, 11 | 3anbi123d 1323 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ↔ (𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)))) |
| 13 | 2 | ixpeq1d 6769 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → X𝑦 ∈ dom 𝑓(𝑔‘𝑦) = X𝑦 ∈ dom 𝐹(𝑔‘𝑦)) |
| 14 | 13 | eqeq2d 2208 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦) ↔ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦))) |
| 15 | 12, 14 | anbi12d 473 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦)) ↔ ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦)))) |
| 16 | 15 | exbidv 1839 |
. . . . 5
⊢ (𝑓 = 𝐹 → (∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦)) ↔ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦)))) |
| 17 | 16 | abbidv 2314 |
. . . 4
⊢ (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦))}) |
| 18 | 17 | fveq2d 5562 |
. . 3
⊢ (𝑓 = 𝐹 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))}) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦))})) |
| 19 | | elex 2774 |
. . 3
⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) |
| 20 | | dmexg 4930 |
. . . . . . . . . 10
⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) |
| 21 | | vex 2766 |
. . . . . . . . . . . . 13
⊢ 𝑔 ∈ V |
| 22 | | vex 2766 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
| 23 | 21, 22 | fvex 5578 |
. . . . . . . . . . . 12
⊢ (𝑔‘𝑦) ∈ V |
| 24 | 23 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ 𝑉 → (𝑔‘𝑦) ∈ V) |
| 25 | 24 | ralrimivw 2571 |
. . . . . . . . . 10
⊢ (𝐹 ∈ 𝑉 → ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ V) |
| 26 | | ixpexgg 6781 |
. . . . . . . . . 10
⊢ ((dom
𝐹 ∈ V ∧
∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ V) → X𝑦 ∈
dom 𝐹(𝑔‘𝑦) ∈ V) |
| 27 | 20, 25, 26 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝑉 → X𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ V) |
| 28 | 27 | ralrimivw 2571 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝑉 → ∀𝑔 ∈ (∪ ran
𝐹
↑𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ V) |
| 29 | | dfiun2g 3948 |
. . . . . . . 8
⊢
(∀𝑔 ∈
(∪ ran 𝐹 ↑𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ V → ∪ 𝑔 ∈ (∪ ran
𝐹
↑𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔‘𝑦) = ∪ {𝑥 ∣ ∃𝑔 ∈ (∪ ran 𝐹 ↑𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦)}) |
| 30 | 28, 29 | syl 14 |
. . . . . . 7
⊢ (𝐹 ∈ 𝑉 → ∪
𝑔 ∈ (∪ ran 𝐹 ↑𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔‘𝑦) = ∪ {𝑥 ∣ ∃𝑔 ∈ (∪ ran 𝐹 ↑𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦)}) |
| 31 | | rnexg 4931 |
. . . . . . . . . 10
⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) |
| 32 | 31 | uniexd 4475 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝑉 → ∪ ran
𝐹 ∈
V) |
| 33 | | mapvalg 6717 |
. . . . . . . . . 10
⊢ ((∪ ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → (∪ ran 𝐹 ↑𝑚 dom 𝐹) = {𝑔 ∣ 𝑔:dom 𝐹⟶∪ ran
𝐹}) |
| 34 | | mapex 6713 |
. . . . . . . . . . 11
⊢ ((dom
𝐹 ∈ V ∧ ∪ ran 𝐹 ∈ V) → {𝑔 ∣ 𝑔:dom 𝐹⟶∪ ran
𝐹} ∈
V) |
| 35 | 34 | ancoms 268 |
. . . . . . . . . 10
⊢ ((∪ ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → {𝑔 ∣ 𝑔:dom 𝐹⟶∪ ran
𝐹} ∈
V) |
| 36 | 33, 35 | eqeltrd 2273 |
. . . . . . . . 9
⊢ ((∪ ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → (∪ ran 𝐹 ↑𝑚 dom 𝐹) ∈ V) |
| 37 | 32, 20, 36 | syl2anc 411 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝑉 → (∪ ran
𝐹
↑𝑚 dom 𝐹) ∈ V) |
| 38 | | iunexg 6176 |
. . . . . . . 8
⊢ (((∪ ran 𝐹 ↑𝑚 dom 𝐹) ∈ V ∧ ∀𝑔 ∈ (∪ ran 𝐹 ↑𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ V) → ∪ 𝑔 ∈ (∪ ran
𝐹
↑𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ V) |
| 39 | 37, 28, 38 | syl2anc 411 |
. . . . . . 7
⊢ (𝐹 ∈ 𝑉 → ∪
𝑔 ∈ (∪ ran 𝐹 ↑𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ V) |
| 40 | 30, 39 | eqeltrrd 2274 |
. . . . . 6
⊢ (𝐹 ∈ 𝑉 → ∪ {𝑥 ∣ ∃𝑔 ∈ (∪ ran 𝐹 ↑𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦)} ∈ V) |
| 41 | | uniexb 4508 |
. . . . . 6
⊢ ({𝑥 ∣ ∃𝑔 ∈ (∪ ran 𝐹 ↑𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦)} ∈ V ↔ ∪ {𝑥
∣ ∃𝑔 ∈
(∪ ran 𝐹 ↑𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦)} ∈ V) |
| 42 | 40, 41 | sylibr 134 |
. . . . 5
⊢ (𝐹 ∈ 𝑉 → {𝑥 ∣ ∃𝑔 ∈ (∪ ran
𝐹
↑𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦)} ∈ V) |
| 43 | | simp1 999 |
. . . . . . . . . . 11
⊢ ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) → 𝑔 Fn dom 𝐹) |
| 44 | | fvssunirng 5573 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ V → (𝐹‘𝑦) ⊆ ∪ ran
𝐹) |
| 45 | 44 | elv 2767 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝑦) ⊆ ∪ ran
𝐹 |
| 46 | 45 | sseli 3179 |
. . . . . . . . . . . . 13
⊢ ((𝑔‘𝑦) ∈ (𝐹‘𝑦) → (𝑔‘𝑦) ∈ ∪ ran
𝐹) |
| 47 | 46 | ralimi 2560 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) → ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ ∪ ran
𝐹) |
| 48 | 47 | 3ad2ant2 1021 |
. . . . . . . . . . 11
⊢ ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) → ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ ∪ ran
𝐹) |
| 49 | | ffnfv 5720 |
. . . . . . . . . . 11
⊢ (𝑔:dom 𝐹⟶∪ ran
𝐹 ↔ (𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ ∪ ran
𝐹)) |
| 50 | 43, 48, 49 | sylanbrc 417 |
. . . . . . . . . 10
⊢ ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) → 𝑔:dom 𝐹⟶∪ ran
𝐹) |
| 51 | 32, 20 | elmapd 6721 |
. . . . . . . . . 10
⊢ (𝐹 ∈ 𝑉 → (𝑔 ∈ (∪ ran
𝐹
↑𝑚 dom 𝐹) ↔ 𝑔:dom 𝐹⟶∪ ran
𝐹)) |
| 52 | 50, 51 | imbitrrid 156 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝑉 → ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) → 𝑔 ∈ (∪ ran
𝐹
↑𝑚 dom 𝐹))) |
| 53 | 52 | anim1d 336 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝑉 → (((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦)) → (𝑔 ∈ (∪ ran
𝐹
↑𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦)))) |
| 54 | 53 | eximdv 1894 |
. . . . . . 7
⊢ (𝐹 ∈ 𝑉 → (∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦)) → ∃𝑔(𝑔 ∈ (∪ ran
𝐹
↑𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦)))) |
| 55 | | df-rex 2481 |
. . . . . . 7
⊢
(∃𝑔 ∈
(∪ ran 𝐹 ↑𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦) ↔ ∃𝑔(𝑔 ∈ (∪ ran
𝐹
↑𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦))) |
| 56 | 54, 55 | imbitrrdi 162 |
. . . . . 6
⊢ (𝐹 ∈ 𝑉 → (∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦)) → ∃𝑔 ∈ (∪ ran
𝐹
↑𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦))) |
| 57 | 56 | ss2abdv 3256 |
. . . . 5
⊢ (𝐹 ∈ 𝑉 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦))} ⊆ {𝑥 ∣ ∃𝑔 ∈ (∪ ran
𝐹
↑𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦)}) |
| 58 | 42, 57 | ssexd 4173 |
. . . 4
⊢ (𝐹 ∈ 𝑉 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦))} ∈ V) |
| 59 | | tgvalex 12934 |
. . . 4
⊢ ({𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦))} ∈ V → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦))}) ∈ V) |
| 60 | 58, 59 | syl 14 |
. . 3
⊢ (𝐹 ∈ 𝑉 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦))}) ∈ V) |
| 61 | 1, 18, 19, 60 | fvmptd3 5655 |
. 2
⊢ (𝐹 ∈ 𝑉 → (∏t‘𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔‘𝑦))})) |
| 62 | 61, 60 | eqeltrd 2273 |
1
⊢ (𝐹 ∈ 𝑉 → (∏t‘𝐹) ∈ V) |