ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ptex GIF version

Theorem ptex 12875
Description: Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.)
Assertion
Ref Expression
ptex (𝐹𝑉 → (∏t𝐹) ∈ V)

Proof of Theorem ptex
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pt 12872 . . 3 t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
2 dmeq 4862 . . . . . . . . 9 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
32fneq2d 5345 . . . . . . . 8 (𝑓 = 𝐹 → (𝑔 Fn dom 𝑓𝑔 Fn dom 𝐹))
4 fveq1 5553 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
54eleq2d 2263 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑔𝑦) ∈ (𝑓𝑦) ↔ (𝑔𝑦) ∈ (𝐹𝑦)))
62, 5raleqbidv 2706 . . . . . . . 8 (𝑓 = 𝐹 → (∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦)))
72difeq1d 3276 . . . . . . . . . 10 (𝑓 = 𝐹 → (dom 𝑓𝑧) = (dom 𝐹𝑧))
84unieqd 3846 . . . . . . . . . . 11 (𝑓 = 𝐹 (𝑓𝑦) = (𝐹𝑦))
98eqeq2d 2205 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑔𝑦) = (𝑓𝑦) ↔ (𝑔𝑦) = (𝐹𝑦)))
107, 9raleqbidv 2706 . . . . . . . . 9 (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)))
1110rexbidv 2495 . . . . . . . 8 (𝑓 = 𝐹 → (∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦) ↔ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)))
123, 6, 113anbi123d 1323 . . . . . . 7 (𝑓 = 𝐹 → ((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ↔ (𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦))))
132ixpeq1d 6764 . . . . . . . 8 (𝑓 = 𝐹X𝑦 ∈ dom 𝑓(𝑔𝑦) = X𝑦 ∈ dom 𝐹(𝑔𝑦))
1413eqeq2d 2205 . . . . . . 7 (𝑓 = 𝐹 → (𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦) ↔ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)))
1512, 14anbi12d 473 . . . . . 6 (𝑓 = 𝐹 → (((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
1615exbidv 1836 . . . . 5 (𝑓 = 𝐹 → (∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
1716abbidv 2311 . . . 4 (𝑓 = 𝐹 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))})
1817fveq2d 5558 . . 3 (𝑓 = 𝐹 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}))
19 elex 2771 . . 3 (𝐹𝑉𝐹 ∈ V)
20 dmexg 4926 . . . . . . . . . 10 (𝐹𝑉 → dom 𝐹 ∈ V)
21 vex 2763 . . . . . . . . . . . . 13 𝑔 ∈ V
22 vex 2763 . . . . . . . . . . . . 13 𝑦 ∈ V
2321, 22fvex 5574 . . . . . . . . . . . 12 (𝑔𝑦) ∈ V
2423a1i 9 . . . . . . . . . . 11 (𝐹𝑉 → (𝑔𝑦) ∈ V)
2524ralrimivw 2568 . . . . . . . . . 10 (𝐹𝑉 → ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
26 ixpexgg 6776 . . . . . . . . . 10 ((dom 𝐹 ∈ V ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V) → X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
2720, 25, 26syl2anc 411 . . . . . . . . 9 (𝐹𝑉X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
2827ralrimivw 2568 . . . . . . . 8 (𝐹𝑉 → ∀𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
29 dfiun2g 3944 . . . . . . . 8 (∀𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V → 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) = {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)})
3028, 29syl 14 . . . . . . 7 (𝐹𝑉 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) = {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)})
31 rnexg 4927 . . . . . . . . . 10 (𝐹𝑉 → ran 𝐹 ∈ V)
3231uniexd 4471 . . . . . . . . 9 (𝐹𝑉 ran 𝐹 ∈ V)
33 mapvalg 6712 . . . . . . . . . 10 (( ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → ( ran 𝐹𝑚 dom 𝐹) = {𝑔𝑔:dom 𝐹 ran 𝐹})
34 mapex 6708 . . . . . . . . . . 11 ((dom 𝐹 ∈ V ∧ ran 𝐹 ∈ V) → {𝑔𝑔:dom 𝐹 ran 𝐹} ∈ V)
3534ancoms 268 . . . . . . . . . 10 (( ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → {𝑔𝑔:dom 𝐹 ran 𝐹} ∈ V)
3633, 35eqeltrd 2270 . . . . . . . . 9 (( ran 𝐹 ∈ V ∧ dom 𝐹 ∈ V) → ( ran 𝐹𝑚 dom 𝐹) ∈ V)
3732, 20, 36syl2anc 411 . . . . . . . 8 (𝐹𝑉 → ( ran 𝐹𝑚 dom 𝐹) ∈ V)
38 iunexg 6171 . . . . . . . 8 ((( ran 𝐹𝑚 dom 𝐹) ∈ V ∧ ∀𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V) → 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
3937, 28, 38syl2anc 411 . . . . . . 7 (𝐹𝑉 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)X𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ V)
4030, 39eqeltrrd 2271 . . . . . 6 (𝐹𝑉 {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V)
41 uniexb 4504 . . . . . 6 ({𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V ↔ {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V)
4240, 41sylibr 134 . . . . 5 (𝐹𝑉 → {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)} ∈ V)
43 simp1 999 . . . . . . . . . . 11 ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → 𝑔 Fn dom 𝐹)
44 fvssunirng 5569 . . . . . . . . . . . . . . 15 (𝑦 ∈ V → (𝐹𝑦) ⊆ ran 𝐹)
4544elv 2764 . . . . . . . . . . . . . 14 (𝐹𝑦) ⊆ ran 𝐹
4645sseli 3175 . . . . . . . . . . . . 13 ((𝑔𝑦) ∈ (𝐹𝑦) → (𝑔𝑦) ∈ ran 𝐹)
4746ralimi 2557 . . . . . . . . . . . 12 (∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ ran 𝐹)
48473ad2ant2 1021 . . . . . . . . . . 11 ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ ran 𝐹)
49 ffnfv 5716 . . . . . . . . . . 11 (𝑔:dom 𝐹 ran 𝐹 ↔ (𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ ran 𝐹))
5043, 48, 49sylanbrc 417 . . . . . . . . . 10 ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → 𝑔:dom 𝐹 ran 𝐹)
5132, 20elmapd 6716 . . . . . . . . . 10 (𝐹𝑉 → (𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ↔ 𝑔:dom 𝐹 ran 𝐹))
5250, 51imbitrrid 156 . . . . . . . . 9 (𝐹𝑉 → ((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) → 𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)))
5352anim1d 336 . . . . . . . 8 (𝐹𝑉 → (((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)) → (𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
5453eximdv 1891 . . . . . . 7 (𝐹𝑉 → (∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)) → ∃𝑔(𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))))
55 df-rex 2478 . . . . . . 7 (∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦) ↔ ∃𝑔(𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)))
5654, 55imbitrrdi 162 . . . . . 6 (𝐹𝑉 → (∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)) → ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)))
5756ss2abdv 3252 . . . . 5 (𝐹𝑉 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))} ⊆ {𝑥 ∣ ∃𝑔 ∈ ( ran 𝐹𝑚 dom 𝐹)𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦)})
5842, 57ssexd 4169 . . . 4 (𝐹𝑉 → {𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))} ∈ V)
59 tgvalex 12874 . . . 4 ({𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))} ∈ V → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}) ∈ V)
6058, 59syl 14 . . 3 (𝐹𝑉 → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}) ∈ V)
611, 18, 19, 60fvmptd3 5651 . 2 (𝐹𝑉 → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝐹𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝐹(𝑔𝑦))}))
6261, 60eqeltrd 2270 1 (𝐹𝑉 → (∏t𝐹) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wral 2472  wrex 2473  Vcvv 2760  cdif 3150  wss 3153   cuni 3835   ciun 3912  dom cdm 4659  ran crn 4660   Fn wfn 5249  wf 5250  cfv 5254  (class class class)co 5918  𝑚 cmap 6702  Xcixp 6752  Fincfn 6794  topGenctg 12865  tcpt 12866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704  df-ixp 6753  df-topgen 12871  df-pt 12872
This theorem is referenced by:  prdsex  12880  psrval  14152  fnpsr  14153  psrbasg  14159  psrplusgg  14162
  Copyright terms: Public domain W3C validator