| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-qus | GIF version | ||
| Description: Define a quotient ring (or quotient group), which is a special case of an image structure df-iimas 12945 where the image function is 𝑥 ↦ [𝑥]𝑒. (Contributed by Mario Carneiro, 23-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| df-qus | ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cqus 12943 | . 2 class /s | |
| 2 | vr | . . 3 setvar 𝑟 | |
| 3 | ve | . . 3 setvar 𝑒 | |
| 4 | cvv 2763 | . . 3 class V | |
| 5 | vx | . . . . 5 setvar 𝑥 | |
| 6 | 2 | cv 1363 | . . . . . 6 class 𝑟 | 
| 7 | cbs 12678 | . . . . . 6 class Base | |
| 8 | 6, 7 | cfv 5258 | . . . . 5 class (Base‘𝑟) | 
| 9 | 5 | cv 1363 | . . . . . 6 class 𝑥 | 
| 10 | 3 | cv 1363 | . . . . . 6 class 𝑒 | 
| 11 | 9, 10 | cec 6590 | . . . . 5 class [𝑥]𝑒 | 
| 12 | 5, 8, 11 | cmpt 4094 | . . . 4 class (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) | 
| 13 | cimas 12942 | . . . 4 class “s | |
| 14 | 12, 6, 13 | co 5922 | . . 3 class ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) | 
| 15 | 2, 3, 4, 4, 14 | cmpo 5924 | . 2 class (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) | 
| 16 | 1, 15 | wceq 1364 | 1 wff /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) | 
| Colors of variables: wff set class | 
| This definition is referenced by: qusval 12966 qusex 12968 | 
| Copyright terms: Public domain | W3C validator |