Step | Hyp | Ref
| Expression |
1 | | cxps 12721 |
. 2
class
Γs |
2 | | vr |
. . 3
setvar π |
3 | | vs |
. . 3
setvar π |
4 | | cvv 2737 |
. . 3
class
V |
5 | | vx |
. . . . . 6
setvar π₯ |
6 | | vy |
. . . . . 6
setvar π¦ |
7 | 2 | cv 1352 |
. . . . . . 7
class π |
8 | | cbs 12461 |
. . . . . . 7
class
Base |
9 | 7, 8 | cfv 5216 |
. . . . . 6
class
(Baseβπ) |
10 | 3 | cv 1352 |
. . . . . . 7
class π |
11 | 10, 8 | cfv 5216 |
. . . . . 6
class
(Baseβπ ) |
12 | | c0 3422 |
. . . . . . . 8
class
β
|
13 | 5 | cv 1352 |
. . . . . . . 8
class π₯ |
14 | 12, 13 | cop 3595 |
. . . . . . 7
class
β¨β
, π₯β© |
15 | | c1o 6409 |
. . . . . . . 8
class
1o |
16 | 6 | cv 1352 |
. . . . . . . 8
class π¦ |
17 | 15, 16 | cop 3595 |
. . . . . . 7
class
β¨1o, π¦β© |
18 | 14, 17 | cpr 3593 |
. . . . . 6
class
{β¨β
, π₯β©, β¨1o, π¦β©} |
19 | 5, 6, 9, 11, 18 | cmpo 5876 |
. . . . 5
class (π₯ β (Baseβπ), π¦ β (Baseβπ ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) |
20 | 19 | ccnv 4625 |
. . . 4
class β‘(π₯ β (Baseβπ), π¦ β (Baseβπ ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) |
21 | | csca 12538 |
. . . . . 6
class
Scalar |
22 | 7, 21 | cfv 5216 |
. . . . 5
class
(Scalarβπ) |
23 | 12, 7 | cop 3595 |
. . . . . 6
class
β¨β
, πβ© |
24 | 15, 10 | cop 3595 |
. . . . . 6
class
β¨1o, π β© |
25 | 23, 24 | cpr 3593 |
. . . . 5
class
{β¨β
, πβ©, β¨1o, π β©} |
26 | | cprds 12713 |
. . . . 5
class Xs |
27 | 22, 25, 26 | co 5874 |
. . . 4
class
((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π β©}) |
28 | | cimas 12719 |
. . . 4
class
βs |
29 | 20, 27, 28 | co 5874 |
. . 3
class (β‘(π₯ β (Baseβπ), π¦ β (Baseβπ ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})
βs ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π β©})) |
30 | 2, 3, 4, 4, 29 | cmpo 5876 |
. 2
class (π β V, π β V β¦ (β‘(π₯ β (Baseβπ), π¦ β (Baseβπ ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})
βs ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π β©}))) |
31 | 1, 30 | wceq 1353 |
1
wff
Γs = (π β V, π β V β¦ (β‘(π₯ β (Baseβπ), π¦ β (Baseβπ ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})
βs ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π β©}))) |