![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qusval | GIF version |
Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qusval.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusval.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
qusval.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
qusval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
Ref | Expression |
---|---|
qusval | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusval.u | . 2 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
2 | df-qus 12729 | . . . 4 ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝜑 → /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟))) |
4 | simprl 529 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → 𝑟 = 𝑅) | |
5 | 4 | fveq2d 5521 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (Base‘𝑟) = (Base‘𝑅)) |
6 | qusval.v | . . . . . . . 8 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
7 | 6 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → 𝑉 = (Base‘𝑅)) |
8 | 5, 7 | eqtr4d 2213 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (Base‘𝑟) = 𝑉) |
9 | eceq2 6574 | . . . . . . 7 ⊢ (𝑒 = ∼ → [𝑥]𝑒 = [𝑥] ∼ ) | |
10 | 9 | ad2antll 491 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → [𝑥]𝑒 = [𝑥] ∼ ) |
11 | 8, 10 | mpteq12dv 4087 | . . . . 5 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )) |
12 | qusval.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
13 | 11, 12 | eqtr4di 2228 | . . . 4 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = 𝐹) |
14 | 13, 4 | oveq12d 5895 | . . 3 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) = (𝐹 “s 𝑅)) |
15 | qusval.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
16 | 15 | elexd 2752 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
17 | qusval.e | . . . 4 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
18 | 17 | elexd 2752 | . . 3 ⊢ (𝜑 → ∼ ∈ V) |
19 | basfn 12522 | . . . . . . . 8 ⊢ Base Fn V | |
20 | funfvex 5534 | . . . . . . . . 9 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
21 | 20 | funfni 5318 | . . . . . . . 8 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
22 | 19, 16, 21 | sylancr 414 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
23 | 6, 22 | eqeltrd 2254 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ V) |
24 | 23 | mptexd 5745 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) ∈ V) |
25 | 12, 24 | eqeltrid 2264 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
26 | imasex 12731 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝑅 ∈ 𝑍) → (𝐹 “s 𝑅) ∈ V) | |
27 | 25, 15, 26 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐹 “s 𝑅) ∈ V) |
28 | 3, 14, 16, 18, 27 | ovmpod 6004 | . 2 ⊢ (𝜑 → (𝑅 /s ∼ ) = (𝐹 “s 𝑅)) |
29 | 1, 28 | eqtrd 2210 | 1 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ↦ cmpt 4066 Fn wfn 5213 ‘cfv 5218 (class class class)co 5877 ∈ cmpo 5879 [cec 6535 Basecbs 12464 “s cimas 12725 /s cqus 12726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-tp 3602 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-ec 6539 df-inn 8922 df-2 8980 df-3 8981 df-ndx 12467 df-slot 12468 df-base 12470 df-plusg 12551 df-mulr 12552 df-iimas 12728 df-qus 12729 |
This theorem is referenced by: qusin 12751 qusbas 12752 qusaddval 12759 qusaddf 12760 qusmulval 12761 qusmulf 12762 |
Copyright terms: Public domain | W3C validator |