| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusval | GIF version | ||
| Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusval.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusval.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| qusval.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
| qusval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| qusval | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusval.u | . 2 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
| 2 | df-qus 13322 | . . . 4 ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝜑 → /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟))) |
| 4 | simprl 529 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → 𝑟 = 𝑅) | |
| 5 | 4 | fveq2d 5627 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (Base‘𝑟) = (Base‘𝑅)) |
| 6 | qusval.v | . . . . . . . 8 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 7 | 6 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → 𝑉 = (Base‘𝑅)) |
| 8 | 5, 7 | eqtr4d 2265 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (Base‘𝑟) = 𝑉) |
| 9 | eceq2 6707 | . . . . . . 7 ⊢ (𝑒 = ∼ → [𝑥]𝑒 = [𝑥] ∼ ) | |
| 10 | 9 | ad2antll 491 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → [𝑥]𝑒 = [𝑥] ∼ ) |
| 11 | 8, 10 | mpteq12dv 4165 | . . . . 5 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )) |
| 12 | qusval.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 13 | 11, 12 | eqtr4di 2280 | . . . 4 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = 𝐹) |
| 14 | 13, 4 | oveq12d 6012 | . . 3 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) = (𝐹 “s 𝑅)) |
| 15 | qusval.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 16 | 15 | elexd 2813 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
| 17 | qusval.e | . . . 4 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
| 18 | 17 | elexd 2813 | . . 3 ⊢ (𝜑 → ∼ ∈ V) |
| 19 | basfn 13077 | . . . . . . . 8 ⊢ Base Fn V | |
| 20 | funfvex 5640 | . . . . . . . . 9 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 21 | 20 | funfni 5419 | . . . . . . . 8 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 22 | 19, 16, 21 | sylancr 414 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 23 | 6, 22 | eqeltrd 2306 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ V) |
| 24 | 23 | mptexd 5859 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) ∈ V) |
| 25 | 12, 24 | eqeltrid 2316 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
| 26 | imasex 13324 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝑅 ∈ 𝑍) → (𝐹 “s 𝑅) ∈ V) | |
| 27 | 25, 15, 26 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐹 “s 𝑅) ∈ V) |
| 28 | 3, 14, 16, 18, 27 | ovmpod 6123 | . 2 ⊢ (𝜑 → (𝑅 /s ∼ ) = (𝐹 “s 𝑅)) |
| 29 | 1, 28 | eqtrd 2262 | 1 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ↦ cmpt 4144 Fn wfn 5309 ‘cfv 5314 (class class class)co 5994 ∈ cmpo 5996 [cec 6668 Basecbs 13018 “s cimas 13318 /s cqus 13319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-ec 6672 df-inn 9099 df-2 9157 df-3 9158 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-mulr 13110 df-iimas 13321 df-qus 13322 |
| This theorem is referenced by: qusin 13345 qusbas 13346 qusaddval 13354 qusaddf 13355 qusmulval 13356 qusmulf 13357 qusgrp2 13636 qusrng 13907 qusring2 14015 |
| Copyright terms: Public domain | W3C validator |