ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusval GIF version

Theorem qusval 12909
Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u (𝜑𝑈 = (𝑅 /s ))
qusval.v (𝜑𝑉 = (Base‘𝑅))
qusval.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
qusval.e (𝜑𝑊)
qusval.r (𝜑𝑅𝑍)
Assertion
Ref Expression
qusval (𝜑𝑈 = (𝐹s 𝑅))
Distinct variable groups:   𝑥,   𝜑,𝑥   𝑥,𝑅   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐹(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem qusval
Dummy variables 𝑒 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusval.u . 2 (𝜑𝑈 = (𝑅 /s ))
2 df-qus 12889 . . . 4 /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟))
32a1i 9 . . 3 (𝜑 → /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)))
4 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → 𝑟 = 𝑅)
54fveq2d 5559 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (Base‘𝑟) = (Base‘𝑅))
6 qusval.v . . . . . . . 8 (𝜑𝑉 = (Base‘𝑅))
76adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → 𝑉 = (Base‘𝑅))
85, 7eqtr4d 2229 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (Base‘𝑟) = 𝑉)
9 eceq2 6626 . . . . . . 7 (𝑒 = → [𝑥]𝑒 = [𝑥] )
109ad2antll 491 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → [𝑥]𝑒 = [𝑥] )
118, 10mpteq12dv 4112 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = (𝑥𝑉 ↦ [𝑥] ))
12 qusval.f . . . . 5 𝐹 = (𝑥𝑉 ↦ [𝑥] )
1311, 12eqtr4di 2244 . . . 4 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = 𝐹)
1413, 4oveq12d 5937 . . 3 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) = (𝐹s 𝑅))
15 qusval.r . . . 4 (𝜑𝑅𝑍)
1615elexd 2773 . . 3 (𝜑𝑅 ∈ V)
17 qusval.e . . . 4 (𝜑𝑊)
1817elexd 2773 . . 3 (𝜑 ∈ V)
19 basfn 12679 . . . . . . . 8 Base Fn V
20 funfvex 5572 . . . . . . . . 9 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
2120funfni 5355 . . . . . . . 8 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
2219, 16, 21sylancr 414 . . . . . . 7 (𝜑 → (Base‘𝑅) ∈ V)
236, 22eqeltrd 2270 . . . . . 6 (𝜑𝑉 ∈ V)
2423mptexd 5786 . . . . 5 (𝜑 → (𝑥𝑉 ↦ [𝑥] ) ∈ V)
2512, 24eqeltrid 2280 . . . 4 (𝜑𝐹 ∈ V)
26 imasex 12891 . . . 4 ((𝐹 ∈ V ∧ 𝑅𝑍) → (𝐹s 𝑅) ∈ V)
2725, 15, 26syl2anc 411 . . 3 (𝜑 → (𝐹s 𝑅) ∈ V)
283, 14, 16, 18, 27ovmpod 6047 . 2 (𝜑 → (𝑅 /s ) = (𝐹s 𝑅))
291, 28eqtrd 2226 1 (𝜑𝑈 = (𝐹s 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cmpt 4091   Fn wfn 5250  cfv 5255  (class class class)co 5919  cmpo 5921  [cec 6587  Basecbs 12621  s cimas 12885   /s cqus 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-ec 6591  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-iimas 12888  df-qus 12889
This theorem is referenced by:  qusin  12912  qusbas  12913  qusaddval  12921  qusaddf  12922  qusmulval  12923  qusmulf  12924  qusgrp2  13186  qusrng  13457  qusring2  13565
  Copyright terms: Public domain W3C validator