![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qusval | GIF version |
Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qusval.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusval.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
qusval.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
qusval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
Ref | Expression |
---|---|
qusval | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusval.u | . 2 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
2 | df-qus 12745 | . . . 4 ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝜑 → /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟))) |
4 | simprl 529 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → 𝑟 = 𝑅) | |
5 | 4 | fveq2d 5533 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (Base‘𝑟) = (Base‘𝑅)) |
6 | qusval.v | . . . . . . . 8 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
7 | 6 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → 𝑉 = (Base‘𝑅)) |
8 | 5, 7 | eqtr4d 2224 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (Base‘𝑟) = 𝑉) |
9 | eceq2 6589 | . . . . . . 7 ⊢ (𝑒 = ∼ → [𝑥]𝑒 = [𝑥] ∼ ) | |
10 | 9 | ad2antll 491 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → [𝑥]𝑒 = [𝑥] ∼ ) |
11 | 8, 10 | mpteq12dv 4099 | . . . . 5 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ )) |
12 | qusval.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
13 | 11, 12 | eqtr4di 2239 | . . . 4 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = 𝐹) |
14 | 13, 4 | oveq12d 5908 | . . 3 ⊢ ((𝜑 ∧ (𝑟 = 𝑅 ∧ 𝑒 = ∼ )) → ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) = (𝐹 “s 𝑅)) |
15 | qusval.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
16 | 15 | elexd 2764 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
17 | qusval.e | . . . 4 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
18 | 17 | elexd 2764 | . . 3 ⊢ (𝜑 → ∼ ∈ V) |
19 | basfn 12537 | . . . . . . . 8 ⊢ Base Fn V | |
20 | funfvex 5546 | . . . . . . . . 9 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
21 | 20 | funfni 5330 | . . . . . . . 8 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
22 | 19, 16, 21 | sylancr 414 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
23 | 6, 22 | eqeltrd 2265 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ V) |
24 | 23 | mptexd 5758 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) ∈ V) |
25 | 12, 24 | eqeltrid 2275 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
26 | imasex 12747 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝑅 ∈ 𝑍) → (𝐹 “s 𝑅) ∈ V) | |
27 | 25, 15, 26 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐹 “s 𝑅) ∈ V) |
28 | 3, 14, 16, 18, 27 | ovmpod 6018 | . 2 ⊢ (𝜑 → (𝑅 /s ∼ ) = (𝐹 “s 𝑅)) |
29 | 1, 28 | eqtrd 2221 | 1 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2159 Vcvv 2751 ↦ cmpt 4078 Fn wfn 5225 ‘cfv 5230 (class class class)co 5890 ∈ cmpo 5892 [cec 6550 Basecbs 12479 “s cimas 12741 /s cqus 12742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-coll 4132 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-cnex 7919 ax-resscn 7920 ax-1re 7922 ax-addrcl 7925 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-ral 2472 df-rex 2473 df-reu 2474 df-rab 2476 df-v 2753 df-sbc 2977 df-csb 3072 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-tp 3614 df-op 3615 df-uni 3824 df-int 3859 df-iun 3902 df-br 4018 df-opab 4079 df-mpt 4080 df-id 4307 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-ima 4653 df-iota 5192 df-fun 5232 df-fn 5233 df-f 5234 df-f1 5235 df-fo 5236 df-f1o 5237 df-fv 5238 df-ov 5893 df-oprab 5894 df-mpo 5895 df-ec 6554 df-inn 8937 df-2 8995 df-3 8996 df-ndx 12482 df-slot 12483 df-base 12485 df-plusg 12567 df-mulr 12568 df-iimas 12744 df-qus 12745 |
This theorem is referenced by: qusin 12768 qusbas 12769 qusaddval 12776 qusaddf 12777 qusmulval 12778 qusmulf 12779 qusgrp2 13020 qusrng 13272 qusring2 13376 |
Copyright terms: Public domain | W3C validator |