ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusval GIF version

Theorem qusval 12765
Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u (𝜑𝑈 = (𝑅 /s ))
qusval.v (𝜑𝑉 = (Base‘𝑅))
qusval.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
qusval.e (𝜑𝑊)
qusval.r (𝜑𝑅𝑍)
Assertion
Ref Expression
qusval (𝜑𝑈 = (𝐹s 𝑅))
Distinct variable groups:   𝑥,   𝜑,𝑥   𝑥,𝑅   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐹(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem qusval
Dummy variables 𝑒 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusval.u . 2 (𝜑𝑈 = (𝑅 /s ))
2 df-qus 12745 . . . 4 /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟))
32a1i 9 . . 3 (𝜑 → /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)))
4 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → 𝑟 = 𝑅)
54fveq2d 5533 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (Base‘𝑟) = (Base‘𝑅))
6 qusval.v . . . . . . . 8 (𝜑𝑉 = (Base‘𝑅))
76adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → 𝑉 = (Base‘𝑅))
85, 7eqtr4d 2224 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (Base‘𝑟) = 𝑉)
9 eceq2 6589 . . . . . . 7 (𝑒 = → [𝑥]𝑒 = [𝑥] )
109ad2antll 491 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → [𝑥]𝑒 = [𝑥] )
118, 10mpteq12dv 4099 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = (𝑥𝑉 ↦ [𝑥] ))
12 qusval.f . . . . 5 𝐹 = (𝑥𝑉 ↦ [𝑥] )
1311, 12eqtr4di 2239 . . . 4 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = 𝐹)
1413, 4oveq12d 5908 . . 3 ((𝜑 ∧ (𝑟 = 𝑅𝑒 = )) → ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) = (𝐹s 𝑅))
15 qusval.r . . . 4 (𝜑𝑅𝑍)
1615elexd 2764 . . 3 (𝜑𝑅 ∈ V)
17 qusval.e . . . 4 (𝜑𝑊)
1817elexd 2764 . . 3 (𝜑 ∈ V)
19 basfn 12537 . . . . . . . 8 Base Fn V
20 funfvex 5546 . . . . . . . . 9 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
2120funfni 5330 . . . . . . . 8 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
2219, 16, 21sylancr 414 . . . . . . 7 (𝜑 → (Base‘𝑅) ∈ V)
236, 22eqeltrd 2265 . . . . . 6 (𝜑𝑉 ∈ V)
2423mptexd 5758 . . . . 5 (𝜑 → (𝑥𝑉 ↦ [𝑥] ) ∈ V)
2512, 24eqeltrid 2275 . . . 4 (𝜑𝐹 ∈ V)
26 imasex 12747 . . . 4 ((𝐹 ∈ V ∧ 𝑅𝑍) → (𝐹s 𝑅) ∈ V)
2725, 15, 26syl2anc 411 . . 3 (𝜑 → (𝐹s 𝑅) ∈ V)
283, 14, 16, 18, 27ovmpod 6018 . 2 (𝜑 → (𝑅 /s ) = (𝐹s 𝑅))
291, 28eqtrd 2221 1 (𝜑𝑈 = (𝐹s 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wcel 2159  Vcvv 2751  cmpt 4078   Fn wfn 5225  cfv 5230  (class class class)co 5890  cmpo 5892  [cec 6550  Basecbs 12479  s cimas 12741   /s cqus 12742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-cnex 7919  ax-resscn 7920  ax-1re 7922  ax-addrcl 7925
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-tp 3614  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-ov 5893  df-oprab 5894  df-mpo 5895  df-ec 6554  df-inn 8937  df-2 8995  df-3 8996  df-ndx 12482  df-slot 12483  df-base 12485  df-plusg 12567  df-mulr 12568  df-iimas 12744  df-qus 12745
This theorem is referenced by:  qusin  12768  qusbas  12769  qusaddval  12776  qusaddf  12777  qusmulval  12778  qusmulf  12779  qusgrp2  13020  qusrng  13272  qusring2  13376
  Copyright terms: Public domain W3C validator