Detailed syntax breakdown of Definition df-iimas
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cimas 12942 | 
. 2
class 
“s | 
| 2 |   | vf | 
. . 3
setvar 𝑓 | 
| 3 |   | vr | 
. . 3
setvar 𝑟 | 
| 4 |   | cvv 2763 | 
. . 3
class
V | 
| 5 |   | vv | 
. . . 4
setvar 𝑣 | 
| 6 | 3 | cv 1363 | 
. . . . 5
class 𝑟 | 
| 7 |   | cbs 12678 | 
. . . . 5
class
Base | 
| 8 | 6, 7 | cfv 5258 | 
. . . 4
class
(Base‘𝑟) | 
| 9 |   | cnx 12675 | 
. . . . . . 7
class
ndx | 
| 10 | 9, 7 | cfv 5258 | 
. . . . . 6
class
(Base‘ndx) | 
| 11 | 2 | cv 1363 | 
. . . . . . 7
class 𝑓 | 
| 12 | 11 | crn 4664 | 
. . . . . 6
class ran 𝑓 | 
| 13 | 10, 12 | cop 3625 | 
. . . . 5
class
〈(Base‘ndx), ran 𝑓〉 | 
| 14 |   | cplusg 12755 | 
. . . . . . 7
class
+g | 
| 15 | 9, 14 | cfv 5258 | 
. . . . . 6
class
(+g‘ndx) | 
| 16 |   | vp | 
. . . . . . 7
setvar 𝑝 | 
| 17 | 5 | cv 1363 | 
. . . . . . 7
class 𝑣 | 
| 18 |   | vq | 
. . . . . . . 8
setvar 𝑞 | 
| 19 | 16 | cv 1363 | 
. . . . . . . . . . . 12
class 𝑝 | 
| 20 | 19, 11 | cfv 5258 | 
. . . . . . . . . . 11
class (𝑓‘𝑝) | 
| 21 | 18 | cv 1363 | 
. . . . . . . . . . . 12
class 𝑞 | 
| 22 | 21, 11 | cfv 5258 | 
. . . . . . . . . . 11
class (𝑓‘𝑞) | 
| 23 | 20, 22 | cop 3625 | 
. . . . . . . . . 10
class
〈(𝑓‘𝑝), (𝑓‘𝑞)〉 | 
| 24 | 6, 14 | cfv 5258 | 
. . . . . . . . . . . 12
class
(+g‘𝑟) | 
| 25 | 19, 21, 24 | co 5922 | 
. . . . . . . . . . 11
class (𝑝(+g‘𝑟)𝑞) | 
| 26 | 25, 11 | cfv 5258 | 
. . . . . . . . . 10
class (𝑓‘(𝑝(+g‘𝑟)𝑞)) | 
| 27 | 23, 26 | cop 3625 | 
. . . . . . . . 9
class
〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉 | 
| 28 | 27 | csn 3622 | 
. . . . . . . 8
class
{〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} | 
| 29 | 18, 17, 28 | ciun 3916 | 
. . . . . . 7
class ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} | 
| 30 | 16, 17, 29 | ciun 3916 | 
. . . . . 6
class ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} | 
| 31 | 15, 30 | cop 3625 | 
. . . . 5
class
〈(+g‘ndx), ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉 | 
| 32 |   | cmulr 12756 | 
. . . . . . 7
class
.r | 
| 33 | 9, 32 | cfv 5258 | 
. . . . . 6
class
(.r‘ndx) | 
| 34 | 6, 32 | cfv 5258 | 
. . . . . . . . . . . 12
class
(.r‘𝑟) | 
| 35 | 19, 21, 34 | co 5922 | 
. . . . . . . . . . 11
class (𝑝(.r‘𝑟)𝑞) | 
| 36 | 35, 11 | cfv 5258 | 
. . . . . . . . . 10
class (𝑓‘(𝑝(.r‘𝑟)𝑞)) | 
| 37 | 23, 36 | cop 3625 | 
. . . . . . . . 9
class
〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉 | 
| 38 | 37 | csn 3622 | 
. . . . . . . 8
class
{〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} | 
| 39 | 18, 17, 38 | ciun 3916 | 
. . . . . . 7
class ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} | 
| 40 | 16, 17, 39 | ciun 3916 | 
. . . . . 6
class ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} | 
| 41 | 33, 40 | cop 3625 | 
. . . . 5
class
〈(.r‘ndx), ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉 | 
| 42 | 13, 31, 41 | ctp 3624 | 
. . . 4
class
{〈(Base‘ndx), ran 𝑓〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} | 
| 43 | 5, 8, 42 | csb 3084 | 
. . 3
class
⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} | 
| 44 | 2, 3, 4, 4, 43 | cmpo 5924 | 
. 2
class (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉}) | 
| 45 | 1, 44 | wceq 1364 | 
1
wff 
“s = (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉}) |