ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iimas GIF version

Definition df-iimas 12722
Description: Define an image structure, which takes a structure and a function on the base set, and maps all the operations via the function. For this to work properly 𝑓 must either be injective or satisfy the well-definedness condition 𝑓(π‘Ž) = 𝑓(𝑐) ∧ 𝑓(𝑏) = 𝑓(𝑑) β†’ 𝑓(π‘Ž + 𝑏) = 𝑓(𝑐 + 𝑑) for each relevant operation.

Note that although we call this an "image" by association to df-ima 4639, in order to keep the definition simple we consider only the case when the domain of 𝐹 is equal to the base set of 𝑅. Other cases can be achieved by restricting 𝐹 (with df-res 4638) and/or 𝑅 ( with df-iress 12469) to their common domain. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by AV, 6-Oct-2020.)

Assertion
Ref Expression
df-iimas β€œs = (𝑓 ∈ V, π‘Ÿ ∈ V ↦ ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œ{⟨(Baseβ€˜ndx), ran π‘“βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}⟩})
Distinct variable group:   𝑓,𝑝,π‘ž,π‘Ÿ,𝑣

Detailed syntax breakdown of Definition df-iimas
StepHypRef Expression
1 cimas 12719 . 2 class β€œs
2 vf . . 3 setvar 𝑓
3 vr . . 3 setvar π‘Ÿ
4 cvv 2737 . . 3 class V
5 vv . . . 4 setvar 𝑣
63cv 1352 . . . . 5 class π‘Ÿ
7 cbs 12461 . . . . 5 class Base
86, 7cfv 5216 . . . 4 class (Baseβ€˜π‘Ÿ)
9 cnx 12458 . . . . . . 7 class ndx
109, 7cfv 5216 . . . . . 6 class (Baseβ€˜ndx)
112cv 1352 . . . . . . 7 class 𝑓
1211crn 4627 . . . . . 6 class ran 𝑓
1310, 12cop 3595 . . . . 5 class ⟨(Baseβ€˜ndx), ran π‘“βŸ©
14 cplusg 12535 . . . . . . 7 class +g
159, 14cfv 5216 . . . . . 6 class (+gβ€˜ndx)
16 vp . . . . . . 7 setvar 𝑝
175cv 1352 . . . . . . 7 class 𝑣
18 vq . . . . . . . 8 setvar π‘ž
1916cv 1352 . . . . . . . . . . . 12 class 𝑝
2019, 11cfv 5216 . . . . . . . . . . 11 class (π‘“β€˜π‘)
2118cv 1352 . . . . . . . . . . . 12 class π‘ž
2221, 11cfv 5216 . . . . . . . . . . 11 class (π‘“β€˜π‘ž)
2320, 22cop 3595 . . . . . . . . . 10 class ⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩
246, 14cfv 5216 . . . . . . . . . . . 12 class (+gβ€˜π‘Ÿ)
2519, 21, 24co 5874 . . . . . . . . . . 11 class (𝑝(+gβ€˜π‘Ÿ)π‘ž)
2625, 11cfv 5216 . . . . . . . . . 10 class (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))
2723, 26cop 3595 . . . . . . . . 9 class ⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩
2827csn 3592 . . . . . . . 8 class {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}
2918, 17, 28ciun 3886 . . . . . . 7 class βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}
3016, 17, 29ciun 3886 . . . . . 6 class βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}
3115, 30cop 3595 . . . . 5 class ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}⟩
32 cmulr 12536 . . . . . . 7 class .r
339, 32cfv 5216 . . . . . 6 class (.rβ€˜ndx)
346, 32cfv 5216 . . . . . . . . . . . 12 class (.rβ€˜π‘Ÿ)
3519, 21, 34co 5874 . . . . . . . . . . 11 class (𝑝(.rβ€˜π‘Ÿ)π‘ž)
3635, 11cfv 5216 . . . . . . . . . 10 class (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))
3723, 36cop 3595 . . . . . . . . 9 class ⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩
3837csn 3592 . . . . . . . 8 class {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}
3918, 17, 38ciun 3886 . . . . . . 7 class βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}
4016, 17, 39ciun 3886 . . . . . 6 class βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}
4133, 40cop 3595 . . . . 5 class ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}⟩
4213, 31, 41ctp 3594 . . . 4 class {⟨(Baseβ€˜ndx), ran π‘“βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}⟩}
435, 8, 42csb 3057 . . 3 class ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œ{⟨(Baseβ€˜ndx), ran π‘“βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}⟩}
442, 3, 4, 4, 43cmpo 5876 . 2 class (𝑓 ∈ V, π‘Ÿ ∈ V ↦ ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œ{⟨(Baseβ€˜ndx), ran π‘“βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}⟩})
451, 44wceq 1353 1 wff β€œs = (𝑓 ∈ V, π‘Ÿ ∈ V ↦ ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œ{⟨(Baseβ€˜ndx), ran π‘“βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}⟩})
Colors of variables: wff set class
This definition is referenced by:  imasex  12725  imasival  12726
  Copyright terms: Public domain W3C validator