Detailed syntax breakdown of Definition df-iimas
Step | Hyp | Ref
| Expression |
1 | | cimas 12738 |
. 2
class
“s |
2 | | vf |
. . 3
setvar 𝑓 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cvv 2749 |
. . 3
class
V |
5 | | vv |
. . . 4
setvar 𝑣 |
6 | 3 | cv 1362 |
. . . . 5
class 𝑟 |
7 | | cbs 12476 |
. . . . 5
class
Base |
8 | 6, 7 | cfv 5228 |
. . . 4
class
(Base‘𝑟) |
9 | | cnx 12473 |
. . . . . . 7
class
ndx |
10 | 9, 7 | cfv 5228 |
. . . . . 6
class
(Base‘ndx) |
11 | 2 | cv 1362 |
. . . . . . 7
class 𝑓 |
12 | 11 | crn 4639 |
. . . . . 6
class ran 𝑓 |
13 | 10, 12 | cop 3607 |
. . . . 5
class
〈(Base‘ndx), ran 𝑓〉 |
14 | | cplusg 12551 |
. . . . . . 7
class
+g |
15 | 9, 14 | cfv 5228 |
. . . . . 6
class
(+g‘ndx) |
16 | | vp |
. . . . . . 7
setvar 𝑝 |
17 | 5 | cv 1362 |
. . . . . . 7
class 𝑣 |
18 | | vq |
. . . . . . . 8
setvar 𝑞 |
19 | 16 | cv 1362 |
. . . . . . . . . . . 12
class 𝑝 |
20 | 19, 11 | cfv 5228 |
. . . . . . . . . . 11
class (𝑓‘𝑝) |
21 | 18 | cv 1362 |
. . . . . . . . . . . 12
class 𝑞 |
22 | 21, 11 | cfv 5228 |
. . . . . . . . . . 11
class (𝑓‘𝑞) |
23 | 20, 22 | cop 3607 |
. . . . . . . . . 10
class
〈(𝑓‘𝑝), (𝑓‘𝑞)〉 |
24 | 6, 14 | cfv 5228 |
. . . . . . . . . . . 12
class
(+g‘𝑟) |
25 | 19, 21, 24 | co 5888 |
. . . . . . . . . . 11
class (𝑝(+g‘𝑟)𝑞) |
26 | 25, 11 | cfv 5228 |
. . . . . . . . . 10
class (𝑓‘(𝑝(+g‘𝑟)𝑞)) |
27 | 23, 26 | cop 3607 |
. . . . . . . . 9
class
〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉 |
28 | 27 | csn 3604 |
. . . . . . . 8
class
{〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} |
29 | 18, 17, 28 | ciun 3898 |
. . . . . . 7
class ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} |
30 | 16, 17, 29 | ciun 3898 |
. . . . . 6
class ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} |
31 | 15, 30 | cop 3607 |
. . . . 5
class
〈(+g‘ndx), ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉 |
32 | | cmulr 12552 |
. . . . . . 7
class
.r |
33 | 9, 32 | cfv 5228 |
. . . . . 6
class
(.r‘ndx) |
34 | 6, 32 | cfv 5228 |
. . . . . . . . . . . 12
class
(.r‘𝑟) |
35 | 19, 21, 34 | co 5888 |
. . . . . . . . . . 11
class (𝑝(.r‘𝑟)𝑞) |
36 | 35, 11 | cfv 5228 |
. . . . . . . . . 10
class (𝑓‘(𝑝(.r‘𝑟)𝑞)) |
37 | 23, 36 | cop 3607 |
. . . . . . . . 9
class
〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉 |
38 | 37 | csn 3604 |
. . . . . . . 8
class
{〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} |
39 | 18, 17, 38 | ciun 3898 |
. . . . . . 7
class ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} |
40 | 16, 17, 39 | ciun 3898 |
. . . . . 6
class ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} |
41 | 33, 40 | cop 3607 |
. . . . 5
class
〈(.r‘ndx), ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉 |
42 | 13, 31, 41 | ctp 3606 |
. . . 4
class
{〈(Base‘ndx), ran 𝑓〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} |
43 | 5, 8, 42 | csb 3069 |
. . 3
class
⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} |
44 | 2, 3, 4, 4, 43 | cmpo 5890 |
. 2
class (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉}) |
45 | 1, 44 | wceq 1363 |
1
wff
“s = (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉}) |