ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iimas GIF version

Definition df-iimas 12741
Description: Define an image structure, which takes a structure and a function on the base set, and maps all the operations via the function. For this to work properly 𝑓 must either be injective or satisfy the well-definedness condition 𝑓(𝑎) = 𝑓(𝑐) ∧ 𝑓(𝑏) = 𝑓(𝑑) → 𝑓(𝑎 + 𝑏) = 𝑓(𝑐 + 𝑑) for each relevant operation.

Note that although we call this an "image" by association to df-ima 4651, in order to keep the definition simple we consider only the case when the domain of 𝐹 is equal to the base set of 𝑅. Other cases can be achieved by restricting 𝐹 (with df-res 4650) and/or 𝑅 ( with df-iress 12484) to their common domain. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by AV, 6-Oct-2020.)

Assertion
Ref Expression
df-iimas s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩})
Distinct variable group:   𝑓,𝑝,𝑞,𝑟,𝑣

Detailed syntax breakdown of Definition df-iimas
StepHypRef Expression
1 cimas 12738 . 2 class s
2 vf . . 3 setvar 𝑓
3 vr . . 3 setvar 𝑟
4 cvv 2749 . . 3 class V
5 vv . . . 4 setvar 𝑣
63cv 1362 . . . . 5 class 𝑟
7 cbs 12476 . . . . 5 class Base
86, 7cfv 5228 . . . 4 class (Base‘𝑟)
9 cnx 12473 . . . . . . 7 class ndx
109, 7cfv 5228 . . . . . 6 class (Base‘ndx)
112cv 1362 . . . . . . 7 class 𝑓
1211crn 4639 . . . . . 6 class ran 𝑓
1310, 12cop 3607 . . . . 5 class ⟨(Base‘ndx), ran 𝑓
14 cplusg 12551 . . . . . . 7 class +g
159, 14cfv 5228 . . . . . 6 class (+g‘ndx)
16 vp . . . . . . 7 setvar 𝑝
175cv 1362 . . . . . . 7 class 𝑣
18 vq . . . . . . . 8 setvar 𝑞
1916cv 1362 . . . . . . . . . . . 12 class 𝑝
2019, 11cfv 5228 . . . . . . . . . . 11 class (𝑓𝑝)
2118cv 1362 . . . . . . . . . . . 12 class 𝑞
2221, 11cfv 5228 . . . . . . . . . . 11 class (𝑓𝑞)
2320, 22cop 3607 . . . . . . . . . 10 class ⟨(𝑓𝑝), (𝑓𝑞)⟩
246, 14cfv 5228 . . . . . . . . . . . 12 class (+g𝑟)
2519, 21, 24co 5888 . . . . . . . . . . 11 class (𝑝(+g𝑟)𝑞)
2625, 11cfv 5228 . . . . . . . . . 10 class (𝑓‘(𝑝(+g𝑟)𝑞))
2723, 26cop 3607 . . . . . . . . 9 class ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩
2827csn 3604 . . . . . . . 8 class {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}
2918, 17, 28ciun 3898 . . . . . . 7 class 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}
3016, 17, 29ciun 3898 . . . . . 6 class 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}
3115, 30cop 3607 . . . . 5 class ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩
32 cmulr 12552 . . . . . . 7 class .r
339, 32cfv 5228 . . . . . 6 class (.r‘ndx)
346, 32cfv 5228 . . . . . . . . . . . 12 class (.r𝑟)
3519, 21, 34co 5888 . . . . . . . . . . 11 class (𝑝(.r𝑟)𝑞)
3635, 11cfv 5228 . . . . . . . . . 10 class (𝑓‘(𝑝(.r𝑟)𝑞))
3723, 36cop 3607 . . . . . . . . 9 class ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩
3837csn 3604 . . . . . . . 8 class {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}
3918, 17, 38ciun 3898 . . . . . . 7 class 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}
4016, 17, 39ciun 3898 . . . . . 6 class 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}
4133, 40cop 3607 . . . . 5 class ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩
4213, 31, 41ctp 3606 . . . 4 class {⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩}
435, 8, 42csb 3069 . . 3 class (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩}
442, 3, 4, 4, 43cmpo 5890 . 2 class (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩})
451, 44wceq 1363 1 wff s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩})
Colors of variables: wff set class
This definition is referenced by:  imasex  12744  imasival  12745
  Copyright terms: Public domain W3C validator