Detailed syntax breakdown of Definition df-iimas
| Step | Hyp | Ref
| Expression |
| 1 | | cimas 13001 |
. 2
class
“s |
| 2 | | vf |
. . 3
setvar 𝑓 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cvv 2763 |
. . 3
class
V |
| 5 | | vv |
. . . 4
setvar 𝑣 |
| 6 | 3 | cv 1363 |
. . . . 5
class 𝑟 |
| 7 | | cbs 12703 |
. . . . 5
class
Base |
| 8 | 6, 7 | cfv 5259 |
. . . 4
class
(Base‘𝑟) |
| 9 | | cnx 12700 |
. . . . . . 7
class
ndx |
| 10 | 9, 7 | cfv 5259 |
. . . . . 6
class
(Base‘ndx) |
| 11 | 2 | cv 1363 |
. . . . . . 7
class 𝑓 |
| 12 | 11 | crn 4665 |
. . . . . 6
class ran 𝑓 |
| 13 | 10, 12 | cop 3626 |
. . . . 5
class
〈(Base‘ndx), ran 𝑓〉 |
| 14 | | cplusg 12780 |
. . . . . . 7
class
+g |
| 15 | 9, 14 | cfv 5259 |
. . . . . 6
class
(+g‘ndx) |
| 16 | | vp |
. . . . . . 7
setvar 𝑝 |
| 17 | 5 | cv 1363 |
. . . . . . 7
class 𝑣 |
| 18 | | vq |
. . . . . . . 8
setvar 𝑞 |
| 19 | 16 | cv 1363 |
. . . . . . . . . . . 12
class 𝑝 |
| 20 | 19, 11 | cfv 5259 |
. . . . . . . . . . 11
class (𝑓‘𝑝) |
| 21 | 18 | cv 1363 |
. . . . . . . . . . . 12
class 𝑞 |
| 22 | 21, 11 | cfv 5259 |
. . . . . . . . . . 11
class (𝑓‘𝑞) |
| 23 | 20, 22 | cop 3626 |
. . . . . . . . . 10
class
〈(𝑓‘𝑝), (𝑓‘𝑞)〉 |
| 24 | 6, 14 | cfv 5259 |
. . . . . . . . . . . 12
class
(+g‘𝑟) |
| 25 | 19, 21, 24 | co 5925 |
. . . . . . . . . . 11
class (𝑝(+g‘𝑟)𝑞) |
| 26 | 25, 11 | cfv 5259 |
. . . . . . . . . 10
class (𝑓‘(𝑝(+g‘𝑟)𝑞)) |
| 27 | 23, 26 | cop 3626 |
. . . . . . . . 9
class
〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉 |
| 28 | 27 | csn 3623 |
. . . . . . . 8
class
{〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} |
| 29 | 18, 17, 28 | ciun 3917 |
. . . . . . 7
class ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} |
| 30 | 16, 17, 29 | ciun 3917 |
. . . . . 6
class ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} |
| 31 | 15, 30 | cop 3626 |
. . . . 5
class
〈(+g‘ndx), ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉 |
| 32 | | cmulr 12781 |
. . . . . . 7
class
.r |
| 33 | 9, 32 | cfv 5259 |
. . . . . 6
class
(.r‘ndx) |
| 34 | 6, 32 | cfv 5259 |
. . . . . . . . . . . 12
class
(.r‘𝑟) |
| 35 | 19, 21, 34 | co 5925 |
. . . . . . . . . . 11
class (𝑝(.r‘𝑟)𝑞) |
| 36 | 35, 11 | cfv 5259 |
. . . . . . . . . 10
class (𝑓‘(𝑝(.r‘𝑟)𝑞)) |
| 37 | 23, 36 | cop 3626 |
. . . . . . . . 9
class
〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉 |
| 38 | 37 | csn 3623 |
. . . . . . . 8
class
{〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} |
| 39 | 18, 17, 38 | ciun 3917 |
. . . . . . 7
class ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} |
| 40 | 16, 17, 39 | ciun 3917 |
. . . . . 6
class ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} |
| 41 | 33, 40 | cop 3626 |
. . . . 5
class
〈(.r‘ndx), ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉 |
| 42 | 13, 31, 41 | ctp 3625 |
. . . 4
class
{〈(Base‘ndx), ran 𝑓〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} |
| 43 | 5, 8, 42 | csb 3084 |
. . 3
class
⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} |
| 44 | 2, 3, 4, 4, 43 | cmpo 5927 |
. 2
class (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉}) |
| 45 | 1, 44 | wceq 1364 |
1
wff
“s = (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉}) |