![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ref | GIF version |
Description: Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
ref | ⊢ ℜ:ℂ⟶ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-re 10273 | . 2 ⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) | |
2 | reval 10279 | . . 3 ⊢ (𝑥 ∈ ℂ → (ℜ‘𝑥) = ((𝑥 + (∗‘𝑥)) / 2)) | |
3 | recl 10283 | . . 3 ⊢ (𝑥 ∈ ℂ → (ℜ‘𝑥) ∈ ℝ) | |
4 | 2, 3 | eqeltrrd 2165 | . 2 ⊢ (𝑥 ∈ ℂ → ((𝑥 + (∗‘𝑥)) / 2) ∈ ℝ) |
5 | 1, 4 | fmpti 5451 | 1 ⊢ ℜ:ℂ⟶ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1438 ⟶wf 5011 ‘cfv 5015 (class class class)co 5652 ℂcc 7346 ℝcr 7347 + caddc 7351 / cdiv 8137 2c2 8471 ∗ccj 10269 ℜcre 10270 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7434 ax-resscn 7435 ax-1cn 7436 ax-1re 7437 ax-icn 7438 ax-addcl 7439 ax-addrcl 7440 ax-mulcl 7441 ax-mulrcl 7442 ax-addcom 7443 ax-mulcom 7444 ax-addass 7445 ax-mulass 7446 ax-distr 7447 ax-i2m1 7448 ax-0lt1 7449 ax-1rid 7450 ax-0id 7451 ax-rnegex 7452 ax-precex 7453 ax-cnre 7454 ax-pre-ltirr 7455 ax-pre-ltwlin 7456 ax-pre-lttrn 7457 ax-pre-apti 7458 ax-pre-ltadd 7459 ax-pre-mulgt0 7460 ax-pre-mulext 7461 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rmo 2367 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-po 4123 df-iso 4124 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-pnf 7522 df-mnf 7523 df-xr 7524 df-ltxr 7525 df-le 7526 df-sub 7653 df-neg 7654 df-reap 8050 df-ap 8057 df-div 8138 df-2 8479 df-cj 10272 df-re 10273 |
This theorem is referenced by: recn2 10701 climre 10706 fsumre 10862 recncf 11597 |
Copyright terms: Public domain | W3C validator |