Detailed syntax breakdown of Definition df-cj
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ccj 11004 | 
. 2
class
∗ | 
| 2 |   | vx | 
. . 3
setvar 𝑥 | 
| 3 |   | cc 7877 | 
. . 3
class
ℂ | 
| 4 | 2 | cv 1363 | 
. . . . . . 7
class 𝑥 | 
| 5 |   | vy | 
. . . . . . . 8
setvar 𝑦 | 
| 6 | 5 | cv 1363 | 
. . . . . . 7
class 𝑦 | 
| 7 |   | caddc 7882 | 
. . . . . . 7
class 
+ | 
| 8 | 4, 6, 7 | co 5922 | 
. . . . . 6
class (𝑥 + 𝑦) | 
| 9 |   | cr 7878 | 
. . . . . 6
class
ℝ | 
| 10 | 8, 9 | wcel 2167 | 
. . . . 5
wff (𝑥 + 𝑦) ∈ ℝ | 
| 11 |   | ci 7881 | 
. . . . . . 7
class
i | 
| 12 |   | cmin 8197 | 
. . . . . . . 8
class 
− | 
| 13 | 4, 6, 12 | co 5922 | 
. . . . . . 7
class (𝑥 − 𝑦) | 
| 14 |   | cmul 7884 | 
. . . . . . 7
class 
· | 
| 15 | 11, 13, 14 | co 5922 | 
. . . . . 6
class (i
· (𝑥 − 𝑦)) | 
| 16 | 15, 9 | wcel 2167 | 
. . . . 5
wff (i ·
(𝑥 − 𝑦)) ∈
ℝ | 
| 17 | 10, 16 | wa 104 | 
. . . 4
wff ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ) | 
| 18 | 17, 5, 3 | crio 5876 | 
. . 3
class
(℩𝑦
∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i
· (𝑥 − 𝑦)) ∈
ℝ)) | 
| 19 | 2, 3, 18 | cmpt 4094 | 
. 2
class (𝑥 ∈ ℂ ↦
(℩𝑦 ∈
ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i
· (𝑥 − 𝑦)) ∈
ℝ))) | 
| 20 | 1, 19 | wceq 1364 | 
1
wff ∗ =
(𝑥 ∈ ℂ ↦
(℩𝑦 ∈
ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i
· (𝑥 − 𝑦)) ∈
ℝ))) |