| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-reap | GIF version | ||
| Description: Define real apartness. Definition in Section 11.2.1 of [HoTT], p. (varies). Although #ℝ is an apartness relation on the reals (see df-ap 8609 for more discussion of apartness relations), for our purposes it is just a stepping stone to defining # which is an apartness relation on complex numbers. On the reals, #ℝ and # agree (apreap 8614). (Contributed by Jim Kingdon, 26-Jan-2020.) | 
| Ref | Expression | 
|---|---|
| df-reap | ⊢ #ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | creap 8601 | . 2 class #ℝ | |
| 2 | vx | . . . . . . 7 setvar 𝑥 | |
| 3 | 2 | cv 1363 | . . . . . 6 class 𝑥 | 
| 4 | cr 7878 | . . . . . 6 class ℝ | |
| 5 | 3, 4 | wcel 2167 | . . . . 5 wff 𝑥 ∈ ℝ | 
| 6 | vy | . . . . . . 7 setvar 𝑦 | |
| 7 | 6 | cv 1363 | . . . . . 6 class 𝑦 | 
| 8 | 7, 4 | wcel 2167 | . . . . 5 wff 𝑦 ∈ ℝ | 
| 9 | 5, 8 | wa 104 | . . . 4 wff (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) | 
| 10 | clt 8061 | . . . . . 6 class < | |
| 11 | 3, 7, 10 | wbr 4033 | . . . . 5 wff 𝑥 < 𝑦 | 
| 12 | 7, 3, 10 | wbr 4033 | . . . . 5 wff 𝑦 < 𝑥 | 
| 13 | 11, 12 | wo 709 | . . . 4 wff (𝑥 < 𝑦 ∨ 𝑦 < 𝑥) | 
| 14 | 9, 13 | wa 104 | . . 3 wff ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥)) | 
| 15 | 14, 2, 6 | copab 4093 | . 2 class {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))} | 
| 16 | 1, 15 | wceq 1364 | 1 wff #ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))} | 
| Colors of variables: wff set class | 
| This definition is referenced by: reapval 8603 | 
| Copyright terms: Public domain | W3C validator |