ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ap GIF version

Definition df-ap 8737
Description: Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8834 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 8760), symmetry (apsym 8761), and cotransitivity (apcotr 8762). Apartness implies negated equality, as seen at apne 8778, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8777).

(Contributed by Jim Kingdon, 26-Jan-2020.)

Assertion
Ref Expression
df-ap # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
Distinct variable group:   𝑠,𝑟,𝑡,𝑢,𝑥,𝑦

Detailed syntax breakdown of Definition df-ap
StepHypRef Expression
1 cap 8736 . 2 class #
2 vx . . . . . . . . . . 11 setvar 𝑥
32cv 1394 . . . . . . . . . 10 class 𝑥
4 vr . . . . . . . . . . . 12 setvar 𝑟
54cv 1394 . . . . . . . . . . 11 class 𝑟
6 ci 8009 . . . . . . . . . . . 12 class i
7 vs . . . . . . . . . . . . 13 setvar 𝑠
87cv 1394 . . . . . . . . . . . 12 class 𝑠
9 cmul 8012 . . . . . . . . . . . 12 class ·
106, 8, 9co 6007 . . . . . . . . . . 11 class (i · 𝑠)
11 caddc 8010 . . . . . . . . . . 11 class +
125, 10, 11co 6007 . . . . . . . . . 10 class (𝑟 + (i · 𝑠))
133, 12wceq 1395 . . . . . . . . 9 wff 𝑥 = (𝑟 + (i · 𝑠))
14 vy . . . . . . . . . . 11 setvar 𝑦
1514cv 1394 . . . . . . . . . 10 class 𝑦
16 vt . . . . . . . . . . . 12 setvar 𝑡
1716cv 1394 . . . . . . . . . . 11 class 𝑡
18 vu . . . . . . . . . . . . 13 setvar 𝑢
1918cv 1394 . . . . . . . . . . . 12 class 𝑢
206, 19, 9co 6007 . . . . . . . . . . 11 class (i · 𝑢)
2117, 20, 11co 6007 . . . . . . . . . 10 class (𝑡 + (i · 𝑢))
2215, 21wceq 1395 . . . . . . . . 9 wff 𝑦 = (𝑡 + (i · 𝑢))
2313, 22wa 104 . . . . . . . 8 wff (𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢)))
24 creap 8729 . . . . . . . . . 10 class #
255, 17, 24wbr 4083 . . . . . . . . 9 wff 𝑟 # 𝑡
268, 19, 24wbr 4083 . . . . . . . . 9 wff 𝑠 # 𝑢
2725, 26wo 713 . . . . . . . 8 wff (𝑟 # 𝑡𝑠 # 𝑢)
2823, 27wa 104 . . . . . . 7 wff ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
29 cr 8006 . . . . . . 7 class
3028, 18, 29wrex 2509 . . . . . 6 wff 𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3130, 16, 29wrex 2509 . . . . 5 wff 𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3231, 7, 29wrex 2509 . . . 4 wff 𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3332, 4, 29wrex 2509 . . 3 wff 𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3433, 2, 14copab 4144 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
351, 34wceq 1395 1 wff # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
Colors of variables: wff set class
This definition is referenced by:  apreap  8742  apreim  8758  aprcl  8801  aptap  8805
  Copyright terms: Public domain W3C validator