ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ap GIF version

Definition df-ap 8697
Description: Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8794 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 8720), symmetry (apsym 8721), and cotransitivity (apcotr 8722). Apartness implies negated equality, as seen at apne 8738, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8737).

(Contributed by Jim Kingdon, 26-Jan-2020.)

Assertion
Ref Expression
df-ap # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
Distinct variable group:   𝑠,𝑟,𝑡,𝑢,𝑥,𝑦

Detailed syntax breakdown of Definition df-ap
StepHypRef Expression
1 cap 8696 . 2 class #
2 vx . . . . . . . . . . 11 setvar 𝑥
32cv 1374 . . . . . . . . . 10 class 𝑥
4 vr . . . . . . . . . . . 12 setvar 𝑟
54cv 1374 . . . . . . . . . . 11 class 𝑟
6 ci 7969 . . . . . . . . . . . 12 class i
7 vs . . . . . . . . . . . . 13 setvar 𝑠
87cv 1374 . . . . . . . . . . . 12 class 𝑠
9 cmul 7972 . . . . . . . . . . . 12 class ·
106, 8, 9co 5974 . . . . . . . . . . 11 class (i · 𝑠)
11 caddc 7970 . . . . . . . . . . 11 class +
125, 10, 11co 5974 . . . . . . . . . 10 class (𝑟 + (i · 𝑠))
133, 12wceq 1375 . . . . . . . . 9 wff 𝑥 = (𝑟 + (i · 𝑠))
14 vy . . . . . . . . . . 11 setvar 𝑦
1514cv 1374 . . . . . . . . . 10 class 𝑦
16 vt . . . . . . . . . . . 12 setvar 𝑡
1716cv 1374 . . . . . . . . . . 11 class 𝑡
18 vu . . . . . . . . . . . . 13 setvar 𝑢
1918cv 1374 . . . . . . . . . . . 12 class 𝑢
206, 19, 9co 5974 . . . . . . . . . . 11 class (i · 𝑢)
2117, 20, 11co 5974 . . . . . . . . . 10 class (𝑡 + (i · 𝑢))
2215, 21wceq 1375 . . . . . . . . 9 wff 𝑦 = (𝑡 + (i · 𝑢))
2313, 22wa 104 . . . . . . . 8 wff (𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢)))
24 creap 8689 . . . . . . . . . 10 class #
255, 17, 24wbr 4062 . . . . . . . . 9 wff 𝑟 # 𝑡
268, 19, 24wbr 4062 . . . . . . . . 9 wff 𝑠 # 𝑢
2725, 26wo 712 . . . . . . . 8 wff (𝑟 # 𝑡𝑠 # 𝑢)
2823, 27wa 104 . . . . . . 7 wff ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
29 cr 7966 . . . . . . 7 class
3028, 18, 29wrex 2489 . . . . . 6 wff 𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3130, 16, 29wrex 2489 . . . . 5 wff 𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3231, 7, 29wrex 2489 . . . 4 wff 𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3332, 4, 29wrex 2489 . . 3 wff 𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3433, 2, 14copab 4123 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
351, 34wceq 1375 1 wff # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
Colors of variables: wff set class
This definition is referenced by:  apreap  8702  apreim  8718  aprcl  8761  aptap  8765
  Copyright terms: Public domain W3C validator