ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ap GIF version

Definition df-ap 8662
Description: Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8759 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 8685), symmetry (apsym 8686), and cotransitivity (apcotr 8687). Apartness implies negated equality, as seen at apne 8703, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8702).

(Contributed by Jim Kingdon, 26-Jan-2020.)

Assertion
Ref Expression
df-ap # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
Distinct variable group:   𝑠,𝑟,𝑡,𝑢,𝑥,𝑦

Detailed syntax breakdown of Definition df-ap
StepHypRef Expression
1 cap 8661 . 2 class #
2 vx . . . . . . . . . . 11 setvar 𝑥
32cv 1372 . . . . . . . . . 10 class 𝑥
4 vr . . . . . . . . . . . 12 setvar 𝑟
54cv 1372 . . . . . . . . . . 11 class 𝑟
6 ci 7934 . . . . . . . . . . . 12 class i
7 vs . . . . . . . . . . . . 13 setvar 𝑠
87cv 1372 . . . . . . . . . . . 12 class 𝑠
9 cmul 7937 . . . . . . . . . . . 12 class ·
106, 8, 9co 5951 . . . . . . . . . . 11 class (i · 𝑠)
11 caddc 7935 . . . . . . . . . . 11 class +
125, 10, 11co 5951 . . . . . . . . . 10 class (𝑟 + (i · 𝑠))
133, 12wceq 1373 . . . . . . . . 9 wff 𝑥 = (𝑟 + (i · 𝑠))
14 vy . . . . . . . . . . 11 setvar 𝑦
1514cv 1372 . . . . . . . . . 10 class 𝑦
16 vt . . . . . . . . . . . 12 setvar 𝑡
1716cv 1372 . . . . . . . . . . 11 class 𝑡
18 vu . . . . . . . . . . . . 13 setvar 𝑢
1918cv 1372 . . . . . . . . . . . 12 class 𝑢
206, 19, 9co 5951 . . . . . . . . . . 11 class (i · 𝑢)
2117, 20, 11co 5951 . . . . . . . . . 10 class (𝑡 + (i · 𝑢))
2215, 21wceq 1373 . . . . . . . . 9 wff 𝑦 = (𝑡 + (i · 𝑢))
2313, 22wa 104 . . . . . . . 8 wff (𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢)))
24 creap 8654 . . . . . . . . . 10 class #
255, 17, 24wbr 4047 . . . . . . . . 9 wff 𝑟 # 𝑡
268, 19, 24wbr 4047 . . . . . . . . 9 wff 𝑠 # 𝑢
2725, 26wo 710 . . . . . . . 8 wff (𝑟 # 𝑡𝑠 # 𝑢)
2823, 27wa 104 . . . . . . 7 wff ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
29 cr 7931 . . . . . . 7 class
3028, 18, 29wrex 2486 . . . . . 6 wff 𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3130, 16, 29wrex 2486 . . . . 5 wff 𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3231, 7, 29wrex 2486 . . . 4 wff 𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3332, 4, 29wrex 2486 . . 3 wff 𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3433, 2, 14copab 4108 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
351, 34wceq 1373 1 wff # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
Colors of variables: wff set class
This definition is referenced by:  apreap  8667  apreim  8683  aprcl  8726  aptap  8730
  Copyright terms: Public domain W3C validator