ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ap GIF version

Definition df-ap 8368
Description: Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8463 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 8391), symmetry (apsym 8392), and cotransitivity (apcotr 8393). Apartness implies negated equality, as seen at apne 8409, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8408).

(Contributed by Jim Kingdon, 26-Jan-2020.)

Assertion
Ref Expression
df-ap # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
Distinct variable group:   𝑠,𝑟,𝑡,𝑢,𝑥,𝑦

Detailed syntax breakdown of Definition df-ap
StepHypRef Expression
1 cap 8367 . 2 class #
2 vx . . . . . . . . . . 11 setvar 𝑥
32cv 1331 . . . . . . . . . 10 class 𝑥
4 vr . . . . . . . . . . . 12 setvar 𝑟
54cv 1331 . . . . . . . . . . 11 class 𝑟
6 ci 7646 . . . . . . . . . . . 12 class i
7 vs . . . . . . . . . . . . 13 setvar 𝑠
87cv 1331 . . . . . . . . . . . 12 class 𝑠
9 cmul 7649 . . . . . . . . . . . 12 class ·
106, 8, 9co 5782 . . . . . . . . . . 11 class (i · 𝑠)
11 caddc 7647 . . . . . . . . . . 11 class +
125, 10, 11co 5782 . . . . . . . . . 10 class (𝑟 + (i · 𝑠))
133, 12wceq 1332 . . . . . . . . 9 wff 𝑥 = (𝑟 + (i · 𝑠))
14 vy . . . . . . . . . . 11 setvar 𝑦
1514cv 1331 . . . . . . . . . 10 class 𝑦
16 vt . . . . . . . . . . . 12 setvar 𝑡
1716cv 1331 . . . . . . . . . . 11 class 𝑡
18 vu . . . . . . . . . . . . 13 setvar 𝑢
1918cv 1331 . . . . . . . . . . . 12 class 𝑢
206, 19, 9co 5782 . . . . . . . . . . 11 class (i · 𝑢)
2117, 20, 11co 5782 . . . . . . . . . 10 class (𝑡 + (i · 𝑢))
2215, 21wceq 1332 . . . . . . . . 9 wff 𝑦 = (𝑡 + (i · 𝑢))
2313, 22wa 103 . . . . . . . 8 wff (𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢)))
24 creap 8360 . . . . . . . . . 10 class #
255, 17, 24wbr 3937 . . . . . . . . 9 wff 𝑟 # 𝑡
268, 19, 24wbr 3937 . . . . . . . . 9 wff 𝑠 # 𝑢
2725, 26wo 698 . . . . . . . 8 wff (𝑟 # 𝑡𝑠 # 𝑢)
2823, 27wa 103 . . . . . . 7 wff ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
29 cr 7643 . . . . . . 7 class
3028, 18, 29wrex 2418 . . . . . 6 wff 𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3130, 16, 29wrex 2418 . . . . 5 wff 𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3231, 7, 29wrex 2418 . . . 4 wff 𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3332, 4, 29wrex 2418 . . 3 wff 𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))
3433, 2, 14copab 3996 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
351, 34wceq 1332 1 wff # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
Colors of variables: wff set class
This definition is referenced by:  apreap  8373  apreim  8389  aprcl  8432
  Copyright terms: Public domain W3C validator