Detailed syntax breakdown of Definition df-ap
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cap 8608 | 
. 2
class 
# | 
| 2 |   | vx | 
. . . . . . . . . . 11
setvar 𝑥 | 
| 3 | 2 | cv 1363 | 
. . . . . . . . . 10
class 𝑥 | 
| 4 |   | vr | 
. . . . . . . . . . . 12
setvar 𝑟 | 
| 5 | 4 | cv 1363 | 
. . . . . . . . . . 11
class 𝑟 | 
| 6 |   | ci 7881 | 
. . . . . . . . . . . 12
class
i | 
| 7 |   | vs | 
. . . . . . . . . . . . 13
setvar 𝑠 | 
| 8 | 7 | cv 1363 | 
. . . . . . . . . . . 12
class 𝑠 | 
| 9 |   | cmul 7884 | 
. . . . . . . . . . . 12
class 
· | 
| 10 | 6, 8, 9 | co 5922 | 
. . . . . . . . . . 11
class (i
· 𝑠) | 
| 11 |   | caddc 7882 | 
. . . . . . . . . . 11
class 
+ | 
| 12 | 5, 10, 11 | co 5922 | 
. . . . . . . . . 10
class (𝑟 + (i · 𝑠)) | 
| 13 | 3, 12 | wceq 1364 | 
. . . . . . . . 9
wff 𝑥 = (𝑟 + (i · 𝑠)) | 
| 14 |   | vy | 
. . . . . . . . . . 11
setvar 𝑦 | 
| 15 | 14 | cv 1363 | 
. . . . . . . . . 10
class 𝑦 | 
| 16 |   | vt | 
. . . . . . . . . . . 12
setvar 𝑡 | 
| 17 | 16 | cv 1363 | 
. . . . . . . . . . 11
class 𝑡 | 
| 18 |   | vu | 
. . . . . . . . . . . . 13
setvar 𝑢 | 
| 19 | 18 | cv 1363 | 
. . . . . . . . . . . 12
class 𝑢 | 
| 20 | 6, 19, 9 | co 5922 | 
. . . . . . . . . . 11
class (i
· 𝑢) | 
| 21 | 17, 20, 11 | co 5922 | 
. . . . . . . . . 10
class (𝑡 + (i · 𝑢)) | 
| 22 | 15, 21 | wceq 1364 | 
. . . . . . . . 9
wff 𝑦 = (𝑡 + (i · 𝑢)) | 
| 23 | 13, 22 | wa 104 | 
. . . . . . . 8
wff (𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) | 
| 24 |   | creap 8601 | 
. . . . . . . . . 10
class 
#ℝ | 
| 25 | 5, 17, 24 | wbr 4033 | 
. . . . . . . . 9
wff 𝑟 #ℝ 𝑡 | 
| 26 | 8, 19, 24 | wbr 4033 | 
. . . . . . . . 9
wff 𝑠 #ℝ 𝑢 | 
| 27 | 25, 26 | wo 709 | 
. . . . . . . 8
wff (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢) | 
| 28 | 23, 27 | wa 104 | 
. . . . . . 7
wff ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) | 
| 29 |   | cr 7878 | 
. . . . . . 7
class
ℝ | 
| 30 | 28, 18, 29 | wrex 2476 | 
. . . . . 6
wff
∃𝑢 ∈
ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) | 
| 31 | 30, 16, 29 | wrex 2476 | 
. . . . 5
wff
∃𝑡 ∈
ℝ ∃𝑢 ∈
ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) | 
| 32 | 31, 7, 29 | wrex 2476 | 
. . . 4
wff
∃𝑠 ∈
ℝ ∃𝑡 ∈
ℝ ∃𝑢 ∈
ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) | 
| 33 | 32, 4, 29 | wrex 2476 | 
. . 3
wff
∃𝑟 ∈
ℝ ∃𝑠 ∈
ℝ ∃𝑡 ∈
ℝ ∃𝑢 ∈
ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) | 
| 34 | 33, 2, 14 | copab 4093 | 
. 2
class
{〈𝑥, 𝑦〉 ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢))} | 
| 35 | 1, 34 | wceq 1364 | 
1
wff  # =
{〈𝑥, 𝑦〉 ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢))} |