ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapval GIF version

Theorem reapval 8204
Description: Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 8216 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
reapval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))

Proof of Theorem reapval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 3880 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 < 𝑦𝐴 < 𝐵))
2 simpr 109 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
3 simpl 108 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
42, 3breq12d 3888 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 < 𝑥𝐵 < 𝐴))
51, 4orbi12d 748 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 < 𝑦𝑦 < 𝑥) ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
6 df-reap 8203 . . 3 # = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦𝑦 < 𝑥))}
75, 6brab2ga 4552 . 2 (𝐴 # 𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵 < 𝐴)))
87baib 872 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 670   = wceq 1299  wcel 1448   class class class wbr 3875  cr 7499   < clt 7672   # creap 8202
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-xp 4483  df-reap 8203
This theorem is referenced by:  reapirr  8205  recexre  8206  reapti  8207  reaplt  8216
  Copyright terms: Public domain W3C validator