| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reapval | GIF version | ||
| Description: Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 8615 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.) | 
| Ref | Expression | 
|---|---|
| reapval | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 #ℝ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq12 4038 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 < 𝑦 ↔ 𝐴 < 𝐵)) | |
| 2 | simpr 110 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
| 3 | simpl 109 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) | |
| 4 | 2, 3 | breq12d 4046 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 < 𝑥 ↔ 𝐵 < 𝐴)) | 
| 5 | 1, 4 | orbi12d 794 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥 < 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | 
| 6 | df-reap 8602 | . . 3 ⊢ #ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))} | |
| 7 | 5, 6 | brab2ga 4738 | . 2 ⊢ (𝐴 #ℝ 𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | 
| 8 | 7 | baib 920 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 #ℝ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ℝcr 7878 < clt 8061 #ℝ creap 8601 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-reap 8602 | 
| This theorem is referenced by: reapirr 8604 recexre 8605 reapti 8606 reaplt 8615 | 
| Copyright terms: Public domain | W3C validator |