ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapval GIF version

Theorem reapval 8711
Description: Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 8723 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
reapval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))

Proof of Theorem reapval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 4087 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 < 𝑦𝐴 < 𝐵))
2 simpr 110 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
3 simpl 109 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
42, 3breq12d 4095 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 < 𝑥𝐵 < 𝐴))
51, 4orbi12d 798 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 < 𝑦𝑦 < 𝑥) ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
6 df-reap 8710 . . 3 # = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦𝑦 < 𝑥))}
75, 6brab2ga 4791 . 2 (𝐴 # 𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵 < 𝐴)))
87baib 924 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200   class class class wbr 4082  cr 7986   < clt 8169   # creap 8709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4722  df-reap 8710
This theorem is referenced by:  reapirr  8712  recexre  8713  reapti  8714  reaplt  8723
  Copyright terms: Public domain W3C validator