ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apreap GIF version

Theorem apreap 8040
Description: Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.)
Assertion
Ref Expression
apreap ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))

Proof of Theorem apreap
Dummy variables 𝑟 𝑠 𝑡 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2094 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 = (𝑟 + (i · 𝑠)) ↔ 𝐴 = (𝑟 + (i · 𝑠))))
21anbi1d 453 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢)))))
32anbi1d 453 . . . . . 6 (𝑥 = 𝐴 → (((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
432rexbidv 2403 . . . . 5 (𝑥 = 𝐴 → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
542rexbidv 2403 . . . 4 (𝑥 = 𝐴 → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
6 eqeq1 2094 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦 = (𝑡 + (i · 𝑢)) ↔ 𝐵 = (𝑡 + (i · 𝑢))))
76anbi2d 452 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢)))))
87anbi1d 453 . . . . . 6 (𝑦 = 𝐵 → (((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
982rexbidv 2403 . . . . 5 (𝑦 = 𝐵 → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
1092rexbidv 2403 . . . 4 (𝑦 = 𝐵 → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
11 df-ap 8035 . . . 4 # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
125, 10, 11brabg 4087 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
13 simplll 500 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝐴 ∈ ℝ)
1413adantr 270 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐴 ∈ ℝ)
15 simplrl 502 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝑟 ∈ ℝ)
1615adantr 270 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑟 ∈ ℝ)
17 simplrr 503 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝑠 ∈ ℝ)
1817adantr 270 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑠 ∈ ℝ)
19 simprll 504 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐴 = (𝑟 + (i · 𝑠)))
20 rereim 8039 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑟 ∈ ℝ) ∧ (𝑠 ∈ ℝ ∧ 𝐴 = (𝑟 + (i · 𝑠)))) → (𝑟 = 𝐴𝑠 = 0))
2114, 16, 18, 19, 20syl22anc 1175 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑟 = 𝐴𝑠 = 0))
2221simprd 112 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑠 = 0)
23 simpllr 501 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝐵 ∈ ℝ)
2423adantr 270 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐵 ∈ ℝ)
25 simplrl 502 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑡 ∈ ℝ)
26 simplrr 503 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑢 ∈ ℝ)
27 simprlr 505 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐵 = (𝑡 + (i · 𝑢)))
28 rereim 8039 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ 𝑡 ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝐵 = (𝑡 + (i · 𝑢)))) → (𝑡 = 𝐵𝑢 = 0))
2924, 25, 26, 27, 28syl22anc 1175 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑡 = 𝐵𝑢 = 0))
3029simprd 112 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑢 = 0)
3122, 30eqtr4d 2123 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑠 = 𝑢)
32 reapti 8032 . . . . . . . . . 10 ((𝑠 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑠 = 𝑢 ↔ ¬ 𝑠 # 𝑢))
3318, 26, 32syl2anc 403 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑠 = 𝑢 ↔ ¬ 𝑠 # 𝑢))
3431, 33mpbid 145 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → ¬ 𝑠 # 𝑢)
35 simprr 499 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑟 # 𝑡𝑠 # 𝑢))
3634, 35ecased 1285 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑟 # 𝑡)
3721simpld 110 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑟 = 𝐴)
3829simpld 110 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑡 = 𝐵)
3936, 37, 383brtr3d 3866 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐴 # 𝐵)
4039ex 113 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → 𝐴 # 𝐵))
4140rexlimdvva 2496 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → 𝐴 # 𝐵))
4241rexlimdvva 2496 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → 𝐴 # 𝐵))
4312, 42sylbid 148 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))
44 ax-icn 7419 . . . . . . . 8 i ∈ ℂ
4544mul01i 7848 . . . . . . 7 (i · 0) = 0
4645oveq2i 5645 . . . . . 6 (𝐴 + (i · 0)) = (𝐴 + 0)
47 simp1 943 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 ∈ ℝ)
4847recnd 7495 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 ∈ ℂ)
4948addid1d 7610 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐴 + 0) = 𝐴)
5046, 49syl5req 2133 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 = (𝐴 + (i · 0)))
5145oveq2i 5645 . . . . . 6 (𝐵 + (i · 0)) = (𝐵 + 0)
52 simp2 944 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐵 ∈ ℝ)
5352recnd 7495 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐵 ∈ ℂ)
5453addid1d 7610 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐵 + 0) = 𝐵)
5551, 54syl5req 2133 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐵 = (𝐵 + (i · 0)))
56 olc 667 . . . . . . 7 (𝐴 # 𝐵 → (0 # 0 ∨ 𝐴 # 𝐵))
57563ad2ant3 966 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (0 # 0 ∨ 𝐴 # 𝐵))
5857orcomd 683 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐴 # 𝐵 ∨ 0 # 0))
5950, 55, 58jca31 302 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)))
60 0red 7468 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 0 ∈ ℝ)
61 simpr 108 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → 𝑢 = 0)
6261oveq2d 5650 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (i · 𝑢) = (i · 0))
6362oveq2d 5650 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (𝐵 + (i · 𝑢)) = (𝐵 + (i · 0)))
6463eqeq2d 2099 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (𝐵 = (𝐵 + (i · 𝑢)) ↔ 𝐵 = (𝐵 + (i · 0))))
6564anbi2d 452 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0)))))
6661breq2d 3849 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (0 # 𝑢 ↔ 0 # 0))
6766orbi2d 739 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → ((𝐴 # 𝐵 ∨ 0 # 𝑢) ↔ (𝐴 # 𝐵 ∨ 0 # 0)))
6865, 67anbi12d 457 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0))))
6960, 68rspcedv 2726 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢))))
70 simpr 108 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → 𝑡 = 𝐵)
7170oveq1d 5649 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (𝑡 + (i · 𝑢)) = (𝐵 + (i · 𝑢)))
7271eqeq2d 2099 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (𝐵 = (𝑡 + (i · 𝑢)) ↔ 𝐵 = (𝐵 + (i · 𝑢))))
7372anbi2d 452 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢)))))
7470breq2d 3849 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (𝐴 # 𝑡𝐴 # 𝐵))
7574orbi1d 740 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → ((𝐴 # 𝑡 ∨ 0 # 𝑢) ↔ (𝐴 # 𝐵 ∨ 0 # 𝑢)))
7673, 75anbi12d 457 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢))))
7776rexbidv 2381 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢)) ↔ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢))))
7852, 77rspcedv 2726 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢)) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
7969, 78syld 44 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
80 simpr 108 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → 𝑠 = 0)
8180oveq2d 5650 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (i · 𝑠) = (i · 0))
8281oveq2d 5650 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (𝐴 + (i · 𝑠)) = (𝐴 + (i · 0)))
8382eqeq2d 2099 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (𝐴 = (𝐴 + (i · 𝑠)) ↔ 𝐴 = (𝐴 + (i · 0))))
8483anbi1d 453 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢)))))
8580breq1d 3847 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (𝑠 # 𝑢 ↔ 0 # 𝑢))
8685orbi2d 739 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → ((𝐴 # 𝑡𝑠 # 𝑢) ↔ (𝐴 # 𝑡 ∨ 0 # 𝑢)))
8784, 86anbi12d 457 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
88872rexbidv 2403 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
8960, 88rspcedv 2726 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢)) → ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
90 simpr 108 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → 𝑟 = 𝐴)
9190oveq1d 5649 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (𝑟 + (i · 𝑠)) = (𝐴 + (i · 𝑠)))
9291eqeq2d 2099 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (𝐴 = (𝑟 + (i · 𝑠)) ↔ 𝐴 = (𝐴 + (i · 𝑠))))
9392anbi1d 453 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢)))))
9490breq1d 3847 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (𝑟 # 𝑡𝐴 # 𝑡))
9594orbi1d 740 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → ((𝑟 # 𝑡𝑠 # 𝑢) ↔ (𝐴 # 𝑡𝑠 # 𝑢)))
9693, 95anbi12d 457 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
9796rexbidv 2381 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
98972rexbidv 2403 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
9947, 98rspcedv 2726 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢)) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
10079, 89, 993syld 56 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
101123adant3 963 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐴 # 𝐵 ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
102100, 101sylibrd 167 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → 𝐴 # 𝐵))
10359, 102mpd 13 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 # 𝐵)
1041033expia 1145 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))
10543, 104impbid 127 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 664  w3a 924   = wceq 1289  wcel 1438  wrex 2360   class class class wbr 3837  (class class class)co 5634  cr 7328  0cc0 7329  ici 7331   + caddc 7332   · cmul 7334   # creap 8027   # cap 8034
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-ltxr 7506  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035
This theorem is referenced by:  reaplt  8041  apreim  8056  apirr  8058  apti  8075  recexap  8096  rerecclap  8171
  Copyright terms: Public domain W3C validator