ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apreap GIF version

Theorem apreap 8441
Description: Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.)
Assertion
Ref Expression
apreap ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))

Proof of Theorem apreap
Dummy variables 𝑟 𝑠 𝑡 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2161 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 = (𝑟 + (i · 𝑠)) ↔ 𝐴 = (𝑟 + (i · 𝑠))))
21anbi1d 461 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢)))))
32anbi1d 461 . . . . . 6 (𝑥 = 𝐴 → (((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
432rexbidv 2479 . . . . 5 (𝑥 = 𝐴 → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
542rexbidv 2479 . . . 4 (𝑥 = 𝐴 → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
6 eqeq1 2161 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦 = (𝑡 + (i · 𝑢)) ↔ 𝐵 = (𝑡 + (i · 𝑢))))
76anbi2d 460 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢)))))
87anbi1d 461 . . . . . 6 (𝑦 = 𝐵 → (((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
982rexbidv 2479 . . . . 5 (𝑦 = 𝐵 → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
1092rexbidv 2479 . . . 4 (𝑦 = 𝐵 → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
11 df-ap 8436 . . . 4 # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
125, 10, 11brabg 4224 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
13 simplll 523 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝐴 ∈ ℝ)
1413adantr 274 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐴 ∈ ℝ)
15 simplrl 525 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝑟 ∈ ℝ)
1615adantr 274 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑟 ∈ ℝ)
17 simplrr 526 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝑠 ∈ ℝ)
1817adantr 274 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑠 ∈ ℝ)
19 simprll 527 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐴 = (𝑟 + (i · 𝑠)))
20 rereim 8440 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑟 ∈ ℝ) ∧ (𝑠 ∈ ℝ ∧ 𝐴 = (𝑟 + (i · 𝑠)))) → (𝑟 = 𝐴𝑠 = 0))
2114, 16, 18, 19, 20syl22anc 1218 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑟 = 𝐴𝑠 = 0))
2221simprd 113 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑠 = 0)
23 simpllr 524 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝐵 ∈ ℝ)
2423adantr 274 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐵 ∈ ℝ)
25 simplrl 525 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑡 ∈ ℝ)
26 simplrr 526 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑢 ∈ ℝ)
27 simprlr 528 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐵 = (𝑡 + (i · 𝑢)))
28 rereim 8440 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ 𝑡 ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝐵 = (𝑡 + (i · 𝑢)))) → (𝑡 = 𝐵𝑢 = 0))
2924, 25, 26, 27, 28syl22anc 1218 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑡 = 𝐵𝑢 = 0))
3029simprd 113 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑢 = 0)
3122, 30eqtr4d 2190 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑠 = 𝑢)
32 reapti 8433 . . . . . . . . . 10 ((𝑠 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑠 = 𝑢 ↔ ¬ 𝑠 # 𝑢))
3318, 26, 32syl2anc 409 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑠 = 𝑢 ↔ ¬ 𝑠 # 𝑢))
3431, 33mpbid 146 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → ¬ 𝑠 # 𝑢)
35 simprr 522 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑟 # 𝑡𝑠 # 𝑢))
3634, 35ecased 1328 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑟 # 𝑡)
3721simpld 111 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑟 = 𝐴)
3829simpld 111 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑡 = 𝐵)
3936, 37, 383brtr3d 3991 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐴 # 𝐵)
4039ex 114 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → 𝐴 # 𝐵))
4140rexlimdvva 2579 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → 𝐴 # 𝐵))
4241rexlimdvva 2579 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → 𝐴 # 𝐵))
4312, 42sylbid 149 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))
44 ax-icn 7806 . . . . . . . 8 i ∈ ℂ
4544mul01i 8245 . . . . . . 7 (i · 0) = 0
4645oveq2i 5825 . . . . . 6 (𝐴 + (i · 0)) = (𝐴 + 0)
47 simp1 982 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 ∈ ℝ)
4847recnd 7885 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 ∈ ℂ)
4948addid1d 8003 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐴 + 0) = 𝐴)
5046, 49syl5req 2200 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 = (𝐴 + (i · 0)))
5145oveq2i 5825 . . . . . 6 (𝐵 + (i · 0)) = (𝐵 + 0)
52 simp2 983 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐵 ∈ ℝ)
5352recnd 7885 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐵 ∈ ℂ)
5453addid1d 8003 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐵 + 0) = 𝐵)
5551, 54syl5req 2200 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐵 = (𝐵 + (i · 0)))
56 olc 701 . . . . . . 7 (𝐴 # 𝐵 → (0 # 0 ∨ 𝐴 # 𝐵))
57563ad2ant3 1005 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (0 # 0 ∨ 𝐴 # 𝐵))
5857orcomd 719 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐴 # 𝐵 ∨ 0 # 0))
5950, 55, 58jca31 307 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)))
60 0red 7858 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 0 ∈ ℝ)
61 simpr 109 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → 𝑢 = 0)
6261oveq2d 5830 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (i · 𝑢) = (i · 0))
6362oveq2d 5830 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (𝐵 + (i · 𝑢)) = (𝐵 + (i · 0)))
6463eqeq2d 2166 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (𝐵 = (𝐵 + (i · 𝑢)) ↔ 𝐵 = (𝐵 + (i · 0))))
6564anbi2d 460 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0)))))
6661breq2d 3973 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (0 # 𝑢 ↔ 0 # 0))
6766orbi2d 780 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → ((𝐴 # 𝐵 ∨ 0 # 𝑢) ↔ (𝐴 # 𝐵 ∨ 0 # 0)))
6865, 67anbi12d 465 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0))))
6960, 68rspcedv 2817 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢))))
70 simpr 109 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → 𝑡 = 𝐵)
7170oveq1d 5829 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (𝑡 + (i · 𝑢)) = (𝐵 + (i · 𝑢)))
7271eqeq2d 2166 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (𝐵 = (𝑡 + (i · 𝑢)) ↔ 𝐵 = (𝐵 + (i · 𝑢))))
7372anbi2d 460 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢)))))
7470breq2d 3973 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (𝐴 # 𝑡𝐴 # 𝐵))
7574orbi1d 781 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → ((𝐴 # 𝑡 ∨ 0 # 𝑢) ↔ (𝐴 # 𝐵 ∨ 0 # 𝑢)))
7673, 75anbi12d 465 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢))))
7776rexbidv 2455 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢)) ↔ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢))))
7852, 77rspcedv 2817 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢)) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
7969, 78syld 45 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
80 simpr 109 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → 𝑠 = 0)
8180oveq2d 5830 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (i · 𝑠) = (i · 0))
8281oveq2d 5830 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (𝐴 + (i · 𝑠)) = (𝐴 + (i · 0)))
8382eqeq2d 2166 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (𝐴 = (𝐴 + (i · 𝑠)) ↔ 𝐴 = (𝐴 + (i · 0))))
8483anbi1d 461 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢)))))
8580breq1d 3971 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (𝑠 # 𝑢 ↔ 0 # 𝑢))
8685orbi2d 780 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → ((𝐴 # 𝑡𝑠 # 𝑢) ↔ (𝐴 # 𝑡 ∨ 0 # 𝑢)))
8784, 86anbi12d 465 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
88872rexbidv 2479 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
8960, 88rspcedv 2817 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢)) → ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
90 simpr 109 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → 𝑟 = 𝐴)
9190oveq1d 5829 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (𝑟 + (i · 𝑠)) = (𝐴 + (i · 𝑠)))
9291eqeq2d 2166 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (𝐴 = (𝑟 + (i · 𝑠)) ↔ 𝐴 = (𝐴 + (i · 𝑠))))
9392anbi1d 461 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢)))))
9490breq1d 3971 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (𝑟 # 𝑡𝐴 # 𝑡))
9594orbi1d 781 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → ((𝑟 # 𝑡𝑠 # 𝑢) ↔ (𝐴 # 𝑡𝑠 # 𝑢)))
9693, 95anbi12d 465 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
9796rexbidv 2455 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
98972rexbidv 2479 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
9947, 98rspcedv 2817 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢)) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
10079, 89, 993syld 57 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
101123adant3 1002 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐴 # 𝐵 ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
102100, 101sylibrd 168 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → 𝐴 # 𝐵))
10359, 102mpd 13 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 # 𝐵)
1041033expia 1184 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))
10543, 104impbid 128 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 963   = wceq 1332  wcel 2125  wrex 2433   class class class wbr 3961  (class class class)co 5814  cr 7710  0cc0 7711  ici 7713   + caddc 7714   · cmul 7716   # creap 8428   # cap 8435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-iota 5128  df-fun 5165  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-pnf 7893  df-mnf 7894  df-ltxr 7896  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436
This theorem is referenced by:  reaplt  8442  apreim  8457  apirr  8459  apti  8476  recexap  8506  rerecclap  8582
  Copyright terms: Public domain W3C validator