![]() |
Intuitionistic Logic Explorer Theorem List (p. 86 of 147) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ltsub23d 8501 | 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐶) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) < 𝐵) | ||
Theorem | ltsub13d 8502 | 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < (𝐵 − 𝐶)) ⇒ ⊢ (𝜑 → 𝐶 < (𝐵 − 𝐴)) | ||
Theorem | lesub1d 8503 | Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝐶) ≤ (𝐵 − 𝐶))) | ||
Theorem | lesub2d 8504 | Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 − 𝐵) ≤ (𝐶 − 𝐴))) | ||
Theorem | ltsub1d 8505 | Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 − 𝐶) < (𝐵 − 𝐶))) | ||
Theorem | ltsub2d 8506 | Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 − 𝐵) < (𝐶 − 𝐴))) | ||
Theorem | ltadd1dd 8507 | Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶)) | ||
Theorem | ltsub1dd 8508 | Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) < (𝐵 − 𝐶)) | ||
Theorem | ltsub2dd 8509 | Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐶 − 𝐵) < (𝐶 − 𝐴)) | ||
Theorem | leadd1dd 8510 | Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 + 𝐶) ≤ (𝐵 + 𝐶)) | ||
Theorem | leadd2dd 8511 | Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) | ||
Theorem | lesub1dd 8512 | Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) | ||
Theorem | lesub2dd 8513 | Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 − 𝐵) ≤ (𝐶 − 𝐴)) | ||
Theorem | le2addd 8514 | Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐵 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) | ||
Theorem | le2subd 8515 | Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐵 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 − 𝐷) ≤ (𝐶 − 𝐵)) | ||
Theorem | ltleaddd 8516 | Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
Theorem | leltaddd 8517 | Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
Theorem | lt2addd 8518 | Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
Theorem | lt2subd 8519 | Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 − 𝐷) < (𝐶 − 𝐵)) | ||
Theorem | possumd 8520 | Condition for a positive sum. (Contributed by Scott Fenton, 16-Dec-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (0 < (𝐴 + 𝐵) ↔ -𝐵 < 𝐴)) | ||
Theorem | sublt0d 8521 | When a subtraction gives a negative result. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) < 0 ↔ 𝐴 < 𝐵)) | ||
Theorem | ltaddsublt 8522 | Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ ((𝐴 + 𝐵) − 𝐶) < 𝐴)) | ||
Theorem | 1le1 8523 | 1 ≤ 1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.) |
⊢ 1 ≤ 1 | ||
Theorem | gt0add 8524 | A positive sum must have a positive addend. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 26-Jan-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐴 ∨ 0 < 𝐵)) | ||
Syntax | creap 8525 | Class of real apartness relation. |
class #ℝ | ||
Definition | df-reap 8526* | Define real apartness. Definition in Section 11.2.1 of [HoTT], p. (varies). Although #ℝ is an apartness relation on the reals (see df-ap 8533 for more discussion of apartness relations), for our purposes it is just a stepping stone to defining # which is an apartness relation on complex numbers. On the reals, #ℝ and # agree (apreap 8538). (Contributed by Jim Kingdon, 26-Jan-2020.) |
⊢ #ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))} | ||
Theorem | reapval 8527 | Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 8539 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 #ℝ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
Theorem | reapirr 8528 | Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8556 instead. (Contributed by Jim Kingdon, 26-Jan-2020.) |
⊢ (𝐴 ∈ ℝ → ¬ 𝐴 #ℝ 𝐴) | ||
Theorem | recexre 8529* | Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 #ℝ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | ||
Theorem | reapti 8530 | Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 8573. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 #ℝ 𝐵)) | ||
Theorem | recexgt0 8531* | Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)) | ||
Syntax | cap 8532 | Class of complex apartness relation. |
class # | ||
Definition | df-ap 8533* |
Define complex apartness. Definition 6.1 of [Geuvers], p. 17.
Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8630 which says that a number apart from zero has a reciprocal). The defining characteristics of an apartness are irreflexivity (apirr 8556), symmetry (apsym 8557), and cotransitivity (apcotr 8558). Apartness implies negated equality, as seen at apne 8574, and the converse would also follow if we assumed excluded middle. In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8573). (Contributed by Jim Kingdon, 26-Jan-2020.) |
⊢ # = {〈𝑥, 𝑦〉 ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢))} | ||
Theorem | ixi 8534 | i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (i · i) = -1 | ||
Theorem | inelr 8535 | The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
⊢ ¬ i ∈ ℝ | ||
Theorem | rimul 8536 | A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0) | ||
Theorem | rereim 8537 | Decomposition of a real number into real part (itself) and imaginary part (zero). (Contributed by Jim Kingdon, 30-Jan-2020.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐵 = 𝐴 ∧ 𝐶 = 0)) | ||
Theorem | apreap 8538 | Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ 𝐴 #ℝ 𝐵)) | ||
Theorem | reaplt 8539 | Real apartness in terms of less than. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 1-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
Theorem | reapltxor 8540 | Real apartness in terms of less than (exclusive-or version). (Contributed by Jim Kingdon, 23-Mar-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ⊻ 𝐵 < 𝐴))) | ||
Theorem | 1ap0 8541 | One is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.) |
⊢ 1 # 0 | ||
Theorem | ltmul1a 8542 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 15-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ 𝐴 < 𝐵) → (𝐴 · 𝐶) < (𝐵 · 𝐶)) | ||
Theorem | ltmul1 8543 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶))) | ||
Theorem | lemul1 8544 | Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) | ||
Theorem | reapmul1lem 8545 | Lemma for reapmul1 8546. (Contributed by Jim Kingdon, 8-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) | ||
Theorem | reapmul1 8546 | Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8739. (Contributed by Jim Kingdon, 8-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) | ||
Theorem | reapadd1 8547 | Real addition respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))) | ||
Theorem | reapneg 8548 | Real negation respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵)) | ||
Theorem | reapcotr 8549 | Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 # 𝐶 ∨ 𝐵 # 𝐶))) | ||
Theorem | remulext1 8550 | Left extensionality for multiplication. (Contributed by Jim Kingdon, 19-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) → 𝐴 # 𝐵)) | ||
Theorem | remulext2 8551 | Right extensionality for real multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 · 𝐴) # (𝐶 · 𝐵) → 𝐴 # 𝐵)) | ||
Theorem | apsqgt0 8552 | The square of a real number apart from zero is positive. (Contributed by Jim Kingdon, 7-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴)) | ||
Theorem | cru 8553 | The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | apreim 8554 | Complex apartness in terms of real and imaginary parts. (Contributed by Jim Kingdon, 12-Feb-2020.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷)) ↔ (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) | ||
Theorem | mulreim 8555 | Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) + -(𝐵 · 𝐷)) + (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴))))) | ||
Theorem | apirr 8556 | Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.) |
⊢ (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴) | ||
Theorem | apsym 8557 | Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ 𝐵 # 𝐴)) | ||
Theorem | apcotr 8558 | Apartness is cotransitive. (Contributed by Jim Kingdon, 16-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 𝐶 ∨ 𝐵 # 𝐶))) | ||
Theorem | apadd1 8559 | Addition respects apartness. Analogue of addcan 8131 for apartness. (Contributed by Jim Kingdon, 13-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))) | ||
Theorem | apadd2 8560 | Addition respects apartness. (Contributed by Jim Kingdon, 16-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐶 + 𝐴) # (𝐶 + 𝐵))) | ||
Theorem | addext 8561 | Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5879. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) | ||
Theorem | apneg 8562 | Negation respects apartness. (Contributed by Jim Kingdon, 14-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵)) | ||
Theorem | mulext1 8563 | Left extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) → 𝐴 # 𝐵)) | ||
Theorem | mulext2 8564 | Right extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 · 𝐴) # (𝐶 · 𝐵) → 𝐴 # 𝐵)) | ||
Theorem | mulext 8565 | Strong extensionality for multiplication. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5879. For us, it is proved a different way. (Contributed by Jim Kingdon, 23-Feb-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) # (𝐶 · 𝐷) → (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) | ||
Theorem | mulap0r 8566 | A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0)) | ||
Theorem | msqge0 8567 | A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴)) | ||
Theorem | msqge0i 8568 | A square is nonnegative. (Contributed by NM, 14-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ 0 ≤ (𝐴 · 𝐴) | ||
Theorem | msqge0d 8569 | A square is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐴)) | ||
Theorem | mulge0 8570 | The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)) | ||
Theorem | mulge0i 8571 | The product of two nonnegative numbers is nonnegative. (Contributed by NM, 30-Jul-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)) | ||
Theorem | mulge0d 8572 | The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) | ||
Theorem | apti 8573 | Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) | ||
Theorem | apne 8574 | Apartness implies negated equality. We cannot in general prove the converse (as shown at neapmkv 14586), which is the whole point of having separate notations for apartness and negated equality. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 → 𝐴 ≠ 𝐵)) | ||
Theorem | apcon4bid 8575 | Contrapositive law deduction for apartness. (Contributed by Jim Kingdon, 31-Jul-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (𝐴 # 𝐵 ↔ 𝐶 # 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | ||
Theorem | leltap 8576 | ≤ implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐵 # 𝐴)) | ||
Theorem | gt0ap0 8577 | Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | ||
Theorem | gt0ap0i 8578 | Positive means apart from zero (useful for ordering theorems involving division). (Contributed by Jim Kingdon, 27-Feb-2020.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 < 𝐴 → 𝐴 # 0) | ||
Theorem | gt0ap0ii 8579 | Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.) |
⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 𝐴 # 0 | ||
Theorem | gt0ap0d 8580 | Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of ℝ, not just ℝ*. (Contributed by Jim Kingdon, 27-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 # 0) | ||
Theorem | negap0 8581 | A number is apart from zero iff its negative is apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.) |
⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ↔ -𝐴 # 0)) | ||
Theorem | negap0d 8582 | The negative of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → -𝐴 # 0) | ||
Theorem | ltleap 8583 | Less than in terms of non-strict order and apartness. (Contributed by Jim Kingdon, 28-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 # 𝐵))) | ||
Theorem | ltap 8584 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴) | ||
Theorem | gtapii 8585 | 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐵 # 𝐴 | ||
Theorem | ltapii 8586 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐴 # 𝐵 | ||
Theorem | ltapi 8587 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 < 𝐵 → 𝐵 # 𝐴) | ||
Theorem | gtapd 8588 | 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 # 𝐴) | ||
Theorem | ltapd 8589 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 # 𝐵) | ||
Theorem | leltapd 8590 | ≤ implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 𝐵 # 𝐴)) | ||
Theorem | ap0gt0 8591 | A nonnegative number is apart from zero if and only if it is positive. (Contributed by Jim Kingdon, 11-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 # 0 ↔ 0 < 𝐴)) | ||
Theorem | ap0gt0d 8592 | A nonzero nonnegative number is positive. (Contributed by Jim Kingdon, 11-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
Theorem | apsub1 8593 | Subtraction respects apartness. Analogue of subcan2 8176 for apartness. (Contributed by Jim Kingdon, 6-Jan-2022.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 − 𝐶) # (𝐵 − 𝐶))) | ||
Theorem | subap0 8594 | Two numbers being apart is equivalent to their difference being apart from zero. (Contributed by Jim Kingdon, 25-Dec-2022.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) # 0 ↔ 𝐴 # 𝐵)) | ||
Theorem | subap0d 8595 | Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.) (Proof shortened by BJ, 15-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) # 0) | ||
Theorem | cnstab 8596 | Equality of complex numbers is stable. Stability here means ¬ ¬ 𝐴 = 𝐵 → 𝐴 = 𝐵 as defined at df-stab 831. This theorem for real numbers is Proposition 5.2 of [BauerHanson], p. 27. (Contributed by Jim Kingdon, 1-Aug-2023.) (Proof shortened by BJ, 15-Aug-2024.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → STAB 𝐴 = 𝐵) | ||
Theorem | aprcl 8597 | Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.) |
⊢ (𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) | ||
Theorem | apsscn 8598* | The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.) |
⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ⊆ ℂ | ||
Theorem | lt0ap0 8599 | A number which is less than zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 # 0) | ||
Theorem | lt0ap0d 8600 | A real number less than zero is apart from zero. Deduction form. (Contributed by Jim Kingdon, 24-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → 𝐴 # 0) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |