Theorem List for Intuitionistic Logic Explorer - 8501-8600 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | mul02 8501 |
Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed
by NM, 10-Aug-1999.)
|
| ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) |
| |
| Theorem | mul02lem2 8502 |
Zero times a real is zero. Although we prove it as a corollary of
mul02 8501, the name is for consistency with the
Metamath Proof Explorer
which proves it before mul02 8501. (Contributed by Scott Fenton,
3-Jan-2013.)
|
| ⊢ (𝐴 ∈ ℝ → (0 · 𝐴) = 0) |
| |
| Theorem | mul01 8503 |
Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed
by NM, 15-May-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) |
| |
| Theorem | mul02i 8504 |
Multiplication by 0. Theorem I.6 of [Apostol]
p. 18. (Contributed by
NM, 23-Nov-1994.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (0 · 𝐴) = 0 |
| |
| Theorem | mul01i 8505 |
Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed
by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 · 0) = 0 |
| |
| Theorem | mul02d 8506 |
Multiplication by 0. Theorem I.6 of [Apostol]
p. 18. (Contributed by
Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (0 · 𝐴) = 0) |
| |
| Theorem | mul01d 8507 |
Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed
by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · 0) = 0) |
| |
| Theorem | ine0 8508 |
The imaginary unit i is not zero. (Contributed by NM,
6-May-1999.)
|
| ⊢ i ≠ 0 |
| |
| Theorem | mulneg1 8509 |
Product with negative is negative of product. Theorem I.12 of [Apostol]
p. 18. (Contributed by NM, 14-May-1999.) (Proof shortened by Mario
Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
| |
| Theorem | mulneg2 8510 |
The product with a negative is the negative of the product. (Contributed
by NM, 30-Jul-2004.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) |
| |
| Theorem | mulneg12 8511 |
Swap the negative sign in a product. (Contributed by NM, 30-Jul-2004.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = (𝐴 · -𝐵)) |
| |
| Theorem | mul2neg 8512 |
Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed
by NM, 30-Jul-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) |
| |
| Theorem | submul2 8513 |
Convert a subtraction to addition using multiplication by a negative.
(Contributed by NM, 2-Feb-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 · 𝐶)) = (𝐴 + (𝐵 · -𝐶))) |
| |
| Theorem | mulm1 8514 |
Product with minus one is negative. (Contributed by NM, 16-Nov-1999.)
|
| ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) |
| |
| Theorem | mulsub 8515 |
Product of two differences. (Contributed by NM, 14-Jan-2006.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) · (𝐶 − 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) |
| |
| Theorem | mulsub2 8516 |
Swap the order of subtraction in a multiplication. (Contributed by Scott
Fenton, 24-Jun-2013.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) · (𝐶 − 𝐷)) = ((𝐵 − 𝐴) · (𝐷 − 𝐶))) |
| |
| Theorem | mulm1i 8517 |
Product with minus one is negative. (Contributed by NM,
31-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (-1 · 𝐴) = -𝐴 |
| |
| Theorem | mulneg1i 8518 |
Product with negative is negative of product. Theorem I.12 of [Apostol]
p. 18. (Contributed by NM, 10-Feb-1995.) (Revised by Mario Carneiro,
27-May-2016.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (-𝐴 · 𝐵) = -(𝐴 · 𝐵) |
| |
| Theorem | mulneg2i 8519 |
Product with negative is negative of product. (Contributed by NM,
31-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐴 · -𝐵) = -(𝐴 · 𝐵) |
| |
| Theorem | mul2negi 8520 |
Product of two negatives. Theorem I.12 of [Apostol] p. 18.
(Contributed by NM, 14-Feb-1995.) (Revised by Mario Carneiro,
27-May-2016.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (-𝐴 · -𝐵) = (𝐴 · 𝐵) |
| |
| Theorem | subdii 8521 |
Distribution of multiplication over subtraction. Theorem I.5 of
[Apostol] p. 18. (Contributed by NM,
26-Nov-1994.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)) |
| |
| Theorem | subdiri 8522 |
Distribution of multiplication over subtraction. Theorem I.5 of
[Apostol] p. 18. (Contributed by NM,
8-May-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) |
| |
| Theorem | muladdi 8523 |
Product of two sums. (Contributed by NM, 17-May-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))) |
| |
| Theorem | mulm1d 8524 |
Product with minus one is negative. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| |
| Theorem | mulneg1d 8525 |
Product with negative is negative of product. Theorem I.12 of [Apostol]
p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
| |
| Theorem | mulneg2d 8526 |
Product with negative is negative of product. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) |
| |
| Theorem | mul2negd 8527 |
Product of two negatives. Theorem I.12 of [Apostol] p. 18.
(Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) |
| |
| Theorem | subdid 8528 |
Distribution of multiplication over subtraction. Theorem I.5 of
[Apostol] p. 18. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶))) |
| |
| Theorem | subdird 8529 |
Distribution of multiplication over subtraction. Theorem I.5 of
[Apostol] p. 18. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) |
| |
| Theorem | muladdd 8530 |
Product of two sums. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) |
| |
| Theorem | mulsubd 8531 |
Product of two differences. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) · (𝐶 − 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) |
| |
| Theorem | muls1d 8532 |
Multiplication by one minus a number. (Contributed by Scott Fenton,
23-Dec-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · (𝐵 − 1)) = ((𝐴 · 𝐵) − 𝐴)) |
| |
| Theorem | mulsubfacd 8533 |
Multiplication followed by the subtraction of a factor. (Contributed by
Alexander van der Vekens, 28-Aug-2018.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) − 𝐵) = ((𝐴 − 1) · 𝐵)) |
| |
| 4.3.4 Ordering on reals (cont.)
|
| |
| Theorem | ltadd2 8534 |
Addition to both sides of 'less than'. (Contributed by NM,
12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
| |
| Theorem | ltadd2i 8535 |
Addition to both sides of 'less than'. (Contributed by NM,
21-Jan-1997.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
| |
| Theorem | ltadd2d 8536 |
Addition to both sides of 'less than'. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
| |
| Theorem | ltadd2dd 8537 |
Addition to both sides of 'less than'. (Contributed by Mario
Carneiro, 30-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
| |
| Theorem | ltletrd 8538 |
Transitive law deduction for 'less than', 'less than or equal to'.
(Contributed by NM, 9-Jan-2006.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) |
| |
| Theorem | ltaddneg 8539 |
Adding a negative number to another number decreases it. (Contributed by
Glauco Siliprandi, 11-Dec-2019.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐵 + 𝐴) < 𝐵)) |
| |
| Theorem | ltaddnegr 8540 |
Adding a negative number to another number decreases it. (Contributed by
AV, 19-Mar-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐴 + 𝐵) < 𝐵)) |
| |
| Theorem | lelttrdi 8541 |
If a number is less than another number, and the other number is less
than or equal to a third number, the first number is less than the third
number. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
|
| ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) |
| |
| Theorem | gt0ne0 8542 |
Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof
shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
| |
| Theorem | lt0ne0 8543 |
A number which is less than zero is not zero. See also lt0ap0 8763 which is
similar but for apartness. (Contributed by Stefan O'Rear,
13-Sep-2014.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 ≠ 0) |
| |
| Theorem | ltadd1 8544 |
Addition to both sides of 'less than'. Part of definition 11.2.7(vi) of
[HoTT], p. (varies). (Contributed by NM,
12-Nov-1999.) (Proof shortened
by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶))) |
| |
| Theorem | leadd1 8545 |
Addition to both sides of 'less than or equal to'. Part of definition
11.2.7(vi) of [HoTT], p. (varies).
(Contributed by NM, 18-Oct-1999.)
(Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 + 𝐶) ≤ (𝐵 + 𝐶))) |
| |
| Theorem | leadd2 8546 |
Addition to both sides of 'less than or equal to'. (Contributed by NM,
26-Oct-1999.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) |
| |
| Theorem | ltsubadd 8547 |
'Less than' relationship between subtraction and addition. (Contributed
by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 + 𝐵))) |
| |
| Theorem | ltsubadd2 8548 |
'Less than' relationship between subtraction and addition. (Contributed
by NM, 21-Jan-1997.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐵 + 𝐶))) |
| |
| Theorem | lesubadd 8549 |
'Less than or equal to' relationship between subtraction and addition.
(Contributed by NM, 17-Nov-2004.) (Proof shortened by Mario Carneiro,
27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) |
| |
| Theorem | lesubadd2 8550 |
'Less than or equal to' relationship between subtraction and addition.
(Contributed by NM, 10-Aug-1999.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐵 + 𝐶))) |
| |
| Theorem | ltaddsub 8551 |
'Less than' relationship between addition and subtraction. (Contributed
by NM, 17-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 − 𝐵))) |
| |
| Theorem | ltaddsub2 8552 |
'Less than' relationship between addition and subtraction. (Contributed
by NM, 17-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐵 < (𝐶 − 𝐴))) |
| |
| Theorem | leaddsub 8553 |
'Less than or equal to' relationship between addition and subtraction.
(Contributed by NM, 6-Apr-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 − 𝐵))) |
| |
| Theorem | leaddsub2 8554 |
'Less than or equal to' relationship between and addition and subtraction.
(Contributed by NM, 6-Apr-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐵 ≤ (𝐶 − 𝐴))) |
| |
| Theorem | suble 8555 |
Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ (𝐴 − 𝐶) ≤ 𝐵)) |
| |
| Theorem | lesub 8556 |
Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005.)
(Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ (𝐵 − 𝐶) ↔ 𝐶 ≤ (𝐵 − 𝐴))) |
| |
| Theorem | ltsub23 8557 |
'Less than' relationship between subtraction and addition. (Contributed
by NM, 4-Oct-1999.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) < 𝐶 ↔ (𝐴 − 𝐶) < 𝐵)) |
| |
| Theorem | ltsub13 8558 |
'Less than' relationship between subtraction and addition. (Contributed
by NM, 17-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < (𝐵 − 𝐶) ↔ 𝐶 < (𝐵 − 𝐴))) |
| |
| Theorem | le2add 8559 |
Adding both sides of two 'less than or equal to' relations. (Contributed
by NM, 17-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) |
| |
| Theorem | lt2add 8560 |
Adding both sides of two 'less than' relations. Theorem I.25 of [Apostol]
p. 20. (Contributed by NM, 15-Aug-1999.) (Proof shortened by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
| |
| Theorem | ltleadd 8561 |
Adding both sides of two orderings. (Contributed by NM, 23-Dec-2007.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
| |
| Theorem | leltadd 8562 |
Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
| |
| Theorem | addgt0 8563 |
The sum of 2 positive numbers is positive. (Contributed by NM,
1-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵)) |
| |
| Theorem | addgegt0 8564 |
The sum of nonnegative and positive numbers is positive. (Contributed by
NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵)) |
| |
| Theorem | addgtge0 8565 |
The sum of nonnegative and positive numbers is positive. (Contributed by
NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → 0 < (𝐴 + 𝐵)) |
| |
| Theorem | addge0 8566 |
The sum of 2 nonnegative numbers is nonnegative. (Contributed by NM,
17-Mar-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵)) |
| |
| Theorem | ltaddpos 8567 |
Adding a positive number to another number increases it. (Contributed by
NM, 17-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) |
| |
| Theorem | ltaddpos2 8568 |
Adding a positive number to another number increases it. (Contributed by
NM, 8-Apr-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐴 + 𝐵))) |
| |
| Theorem | ltsubpos 8569 |
Subtracting a positive number from another number decreases it.
(Contributed by NM, 17-Nov-2004.) (Proof shortened by Andrew Salmon,
19-Nov-2011.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ (𝐵 − 𝐴) < 𝐵)) |
| |
| Theorem | posdif 8570 |
Comparison of two numbers whose difference is positive. (Contributed by
NM, 17-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| |
| Theorem | lesub1 8571 |
Subtraction from both sides of 'less than or equal to'. (Contributed by
NM, 13-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝐶) ≤ (𝐵 − 𝐶))) |
| |
| Theorem | lesub2 8572 |
Subtraction of both sides of 'less than or equal to'. (Contributed by NM,
29-Sep-2005.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐶 − 𝐵) ≤ (𝐶 − 𝐴))) |
| |
| Theorem | ltsub1 8573 |
Subtraction from both sides of 'less than'. (Contributed by FL,
3-Jan-2008.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 − 𝐶) < (𝐵 − 𝐶))) |
| |
| Theorem | ltsub2 8574 |
Subtraction of both sides of 'less than'. (Contributed by NM,
29-Sep-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 − 𝐵) < (𝐶 − 𝐴))) |
| |
| Theorem | lt2sub 8575 |
Subtracting both sides of two 'less than' relations. (Contributed by
Mario Carneiro, 14-Apr-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐷 < 𝐵) → (𝐴 − 𝐵) < (𝐶 − 𝐷))) |
| |
| Theorem | le2sub 8576 |
Subtracting both sides of two 'less than or equal to' relations.
(Contributed by Mario Carneiro, 14-Apr-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵) → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷))) |
| |
| Theorem | ltneg 8577 |
Negative of both sides of 'less than'. Theorem I.23 of [Apostol] p. 20.
(Contributed by NM, 27-Aug-1999.) (Proof shortened by Mario Carneiro,
27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴)) |
| |
| Theorem | ltnegcon1 8578 |
Contraposition of negative in 'less than'. (Contributed by NM,
8-Nov-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 < 𝐵 ↔ -𝐵 < 𝐴)) |
| |
| Theorem | ltnegcon2 8579 |
Contraposition of negative in 'less than'. (Contributed by Mario
Carneiro, 25-Feb-2015.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < -𝐵 ↔ 𝐵 < -𝐴)) |
| |
| Theorem | leneg 8580 |
Negative of both sides of 'less than or equal to'. (Contributed by NM,
12-Sep-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) |
| |
| Theorem | lenegcon1 8581 |
Contraposition of negative in 'less than or equal to'. (Contributed by
NM, 10-May-2004.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 ≤ 𝐵 ↔ -𝐵 ≤ 𝐴)) |
| |
| Theorem | lenegcon2 8582 |
Contraposition of negative in 'less than or equal to'. (Contributed by
NM, 8-Oct-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ -𝐵 ↔ 𝐵 ≤ -𝐴)) |
| |
| Theorem | lt0neg1 8583 |
Comparison of a number and its negative to zero. Theorem I.23 of
[Apostol] p. 20. (Contributed by NM,
14-May-1999.)
|
| ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴)) |
| |
| Theorem | lt0neg2 8584 |
Comparison of a number and its negative to zero. (Contributed by NM,
10-May-2004.)
|
| ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ -𝐴 < 0)) |
| |
| Theorem | le0neg1 8585 |
Comparison of a number and its negative to zero. (Contributed by NM,
10-May-2004.)
|
| ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) |
| |
| Theorem | le0neg2 8586 |
Comparison of a number and its negative to zero. (Contributed by NM,
24-Aug-1999.)
|
| ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0)) |
| |
| Theorem | addge01 8587 |
A number is less than or equal to itself plus a nonnegative number.
(Contributed by NM, 21-Feb-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) |
| |
| Theorem | addge02 8588 |
A number is less than or equal to itself plus a nonnegative number.
(Contributed by NM, 27-Jul-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 + 𝐴))) |
| |
| Theorem | add20 8589 |
Two nonnegative numbers are zero iff their sum is zero. (Contributed by
Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro,
27-May-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
| |
| Theorem | subge0 8590 |
Nonnegative subtraction. (Contributed by NM, 14-Mar-2005.) (Proof
shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
| |
| Theorem | suble0 8591 |
Nonpositive subtraction. (Contributed by NM, 20-Mar-2008.) (Proof
shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) |
| |
| Theorem | leaddle0 8592 |
The sum of a real number and a second real number is less then the real
number iff the second real number is negative. (Contributed by Alexander
van der Vekens, 30-May-2018.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐴 ↔ 𝐵 ≤ 0)) |
| |
| Theorem | subge02 8593 |
Nonnegative subtraction. (Contributed by NM, 27-Jul-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (𝐴 − 𝐵) ≤ 𝐴)) |
| |
| Theorem | lesub0 8594 |
Lemma to show a nonnegative number is zero. (Contributed by NM,
8-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 𝐵 ≤ (𝐵 − 𝐴)) ↔ 𝐴 = 0)) |
| |
| Theorem | mullt0 8595 |
The product of two negative numbers is positive. (Contributed by Jeff
Hankins, 8-Jun-2009.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (𝐴 · 𝐵)) |
| |
| Theorem | 0le1 8596 |
0 is less than or equal to 1. (Contributed by Mario Carneiro,
29-Apr-2015.)
|
| ⊢ 0 ≤ 1 |
| |
| Theorem | ltordlem 8597* |
Lemma for eqord1 8598. (Contributed by Mario Carneiro,
14-Jun-2014.)
|
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵)
& ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀)
& ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁)
& ⊢ 𝑆 ⊆ ℝ & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 < 𝐷 → 𝑀 < 𝑁)) |
| |
| Theorem | eqord1 8598* |
A strictly increasing real function on a subset of ℝ is
one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.) (Revised
by Jim Kingdon, 20-Dec-2022.)
|
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵)
& ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀)
& ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁)
& ⊢ 𝑆 ⊆ ℝ & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) |
| |
| Theorem | eqord2 8599* |
A strictly decreasing real function on a subset of ℝ is one-to-one.
(Contributed by Mario Carneiro, 14-Jun-2014.)
|
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵)
& ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀)
& ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁)
& ⊢ 𝑆 ⊆ ℝ & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐵 < 𝐴)) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) |
| |
| Theorem | leidi 8600 |
'Less than or equal to' is reflexive. (Contributed by NM,
18-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ 𝐴 ≤ 𝐴 |