HomeHome Intuitionistic Logic Explorer
Theorem List (p. 86 of 145)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8501-8600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremltsub1dd 8501 Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐴𝐶) < (𝐵𝐶))
 
Theoremltsub2dd 8502 Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐶𝐵) < (𝐶𝐴))
 
Theoremleadd1dd 8503 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴 + 𝐶) ≤ (𝐵 + 𝐶))
 
Theoremleadd2dd 8504 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))
 
Theoremlesub1dd 8505 Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴𝐶) ≤ (𝐵𝐶))
 
Theoremlesub2dd 8506 Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐶𝐵) ≤ (𝐶𝐴))
 
Theoremle2addd 8507 Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)       (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))
 
Theoremle2subd 8508 Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)       (𝜑 → (𝐴𝐷) ≤ (𝐶𝐵))
 
Theoremltleaddd 8509 Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴 < 𝐶)    &   (𝜑𝐵𝐷)       (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷))
 
Theoremleltaddd 8510 Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵 < 𝐷)       (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷))
 
Theoremlt2addd 8511 Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴 < 𝐶)    &   (𝜑𝐵 < 𝐷)       (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷))
 
Theoremlt2subd 8512 Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴 < 𝐶)    &   (𝜑𝐵 < 𝐷)       (𝜑 → (𝐴𝐷) < (𝐶𝐵))
 
Theorempossumd 8513 Condition for a positive sum. (Contributed by Scott Fenton, 16-Dec-2017.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 < (𝐴 + 𝐵) ↔ -𝐵 < 𝐴))
 
Theoremsublt0d 8514 When a subtraction gives a negative result. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((𝐴𝐵) < 0 ↔ 𝐴 < 𝐵))
 
Theoremltaddsublt 8515 Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ ((𝐴 + 𝐵) − 𝐶) < 𝐴))
 
Theorem1le1 8516 1 ≤ 1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.)
1 ≤ 1
 
Theoremgt0add 8517 A positive sum must have a positive addend. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 26-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐴 ∨ 0 < 𝐵))
 
4.3.5  Real Apartness
 
Syntaxcreap 8518 Class of real apartness relation.
class #
 
Definitiondf-reap 8519* Define real apartness. Definition in Section 11.2.1 of [HoTT], p. (varies). Although # is an apartness relation on the reals (see df-ap 8526 for more discussion of apartness relations), for our purposes it is just a stepping stone to defining # which is an apartness relation on complex numbers. On the reals, # and # agree (apreap 8531). (Contributed by Jim Kingdon, 26-Jan-2020.)
# = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦𝑦 < 𝑥))}
 
Theoremreapval 8520 Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 8532 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
 
Theoremreapirr 8521 Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8549 instead. (Contributed by Jim Kingdon, 26-Jan-2020.)
(𝐴 ∈ ℝ → ¬ 𝐴 # 𝐴)
 
Theoremrecexre 8522* Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
 
Theoremreapti 8523 Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 8566. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
 
Theoremrecexgt0 8524* Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
 
4.3.6  Complex Apartness
 
Syntaxcap 8525 Class of complex apartness relation.
class #
 
Definitiondf-ap 8526* Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8622 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 8549), symmetry (apsym 8550), and cotransitivity (apcotr 8551). Apartness implies negated equality, as seen at apne 8567, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8566).

(Contributed by Jim Kingdon, 26-Jan-2020.)

# = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
 
Theoremixi 8527 i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(i · i) = -1
 
Theoreminelr 8528 The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.)
¬ i ∈ ℝ
 
Theoremrimul 8529 A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0)
 
Theoremrereim 8530 Decomposition of a real number into real part (itself) and imaginary part (zero). (Contributed by Jim Kingdon, 30-Jan-2020.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐵 = 𝐴𝐶 = 0))
 
Theoremapreap 8531 Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))
 
Theoremreaplt 8532 Real apartness in terms of less than. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 1-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
 
Theoremreapltxor 8533 Real apartness in terms of less than (exclusive-or version). (Contributed by Jim Kingdon, 23-Mar-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
 
Theorem1ap0 8534 One is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
1 # 0
 
Theoremltmul1a 8535 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 15-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ 𝐴 < 𝐵) → (𝐴 · 𝐶) < (𝐵 · 𝐶))
 
Theoremltmul1 8536 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
 
Theoremlemul1 8537 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
 
Theoremreapmul1lem 8538 Lemma for reapmul1 8539. (Contributed by Jim Kingdon, 8-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
 
Theoremreapmul1 8539 Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8731. (Contributed by Jim Kingdon, 8-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
 
Theoremreapadd1 8540 Real addition respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))
 
Theoremreapneg 8541 Real negation respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵))
 
Theoremreapcotr 8542 Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
 
Theoremremulext1 8543 Left extensionality for multiplication. (Contributed by Jim Kingdon, 19-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) → 𝐴 # 𝐵))
 
Theoremremulext2 8544 Right extensionality for real multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 · 𝐴) # (𝐶 · 𝐵) → 𝐴 # 𝐵))
 
Theoremapsqgt0 8545 The square of a real number apart from zero is positive. (Contributed by Jim Kingdon, 7-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴))
 
Theoremcru 8546 The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremapreim 8547 Complex apartness in terms of real and imaginary parts. (Contributed by Jim Kingdon, 12-Feb-2020.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷)) ↔ (𝐴 # 𝐶𝐵 # 𝐷)))
 
Theoremmulreim 8548 Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) + -(𝐵 · 𝐷)) + (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴)))))
 
Theoremapirr 8549 Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.)
(𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴)
 
Theoremapsym 8550 Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵𝐵 # 𝐴))
 
Theoremapcotr 8551 Apartness is cotransitive. (Contributed by Jim Kingdon, 16-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
 
Theoremapadd1 8552 Addition respects apartness. Analogue of addcan 8124 for apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))
 
Theoremapadd2 8553 Addition respects apartness. (Contributed by Jim Kingdon, 16-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐶 + 𝐴) # (𝐶 + 𝐵)))
 
Theoremaddext 8554 Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5878. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (𝐴 # 𝐶𝐵 # 𝐷)))
 
Theoremapneg 8555 Negation respects apartness. (Contributed by Jim Kingdon, 14-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵))
 
Theoremmulext1 8556 Left extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) → 𝐴 # 𝐵))
 
Theoremmulext2 8557 Right extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 · 𝐴) # (𝐶 · 𝐵) → 𝐴 # 𝐵))
 
Theoremmulext 8558 Strong extensionality for multiplication. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5878. For us, it is proved a different way. (Contributed by Jim Kingdon, 23-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) # (𝐶 · 𝐷) → (𝐴 # 𝐶𝐵 # 𝐷)))
 
Theoremmulap0r 8559 A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
 
Theoremmsqge0 8560 A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
 
Theoremmsqge0i 8561 A square is nonnegative. (Contributed by NM, 14-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
𝐴 ∈ ℝ       0 ≤ (𝐴 · 𝐴)
 
Theoremmsqge0d 8562 A square is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → 0 ≤ (𝐴 · 𝐴))
 
Theoremmulge0 8563 The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
 
Theoremmulge0i 8564 The product of two nonnegative numbers is nonnegative. (Contributed by NM, 30-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵))
 
Theoremmulge0d 8565 The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → 0 ≤ (𝐴 · 𝐵))
 
Theoremapti 8566 Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
 
Theoremapne 8567 Apartness implies negated equality. We cannot in general prove the converse (as shown at neapmkv 14464), which is the whole point of having separate notations for apartness and negated equality. (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵𝐴𝐵))
 
Theoremapcon4bid 8568 Contrapositive law deduction for apartness. (Contributed by Jim Kingdon, 31-Jul-2023.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑 → (𝐴 # 𝐵𝐶 # 𝐷))       (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
 
Theoremleltap 8569 implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴 < 𝐵𝐵 # 𝐴))
 
Theoremgt0ap0 8570 Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0)
 
Theoremgt0ap0i 8571 Positive means apart from zero (useful for ordering theorems involving division). (Contributed by Jim Kingdon, 27-Feb-2020.)
𝐴 ∈ ℝ       (0 < 𝐴𝐴 # 0)
 
Theoremgt0ap0ii 8572 Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
𝐴 ∈ ℝ    &   0 < 𝐴       𝐴 # 0
 
Theoremgt0ap0d 8573 Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of , not just *. (Contributed by Jim Kingdon, 27-Feb-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)       (𝜑𝐴 # 0)
 
Theoremnegap0 8574 A number is apart from zero iff its negative is apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
(𝐴 ∈ ℂ → (𝐴 # 0 ↔ -𝐴 # 0))
 
Theoremnegap0d 8575 The negative of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → -𝐴 # 0)
 
Theoremltleap 8576 Less than in terms of non-strict order and apartness. (Contributed by Jim Kingdon, 28-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐴 # 𝐵)))
 
Theoremltap 8577 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴)
 
Theoremgtapii 8578 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐴 < 𝐵       𝐵 # 𝐴
 
Theoremltapii 8579 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐴 < 𝐵       𝐴 # 𝐵
 
Theoremltapi 8580 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵𝐵 # 𝐴)
 
Theoremgtapd 8581 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐵 # 𝐴)
 
Theoremltapd 8582 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐴 # 𝐵)
 
Theoremleltapd 8583 implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴 < 𝐵𝐵 # 𝐴))
 
Theoremap0gt0 8584 A nonnegative number is apart from zero if and only if it is positive. (Contributed by Jim Kingdon, 11-Aug-2021.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 # 0 ↔ 0 < 𝐴))
 
Theoremap0gt0d 8585 A nonzero nonnegative number is positive. (Contributed by Jim Kingdon, 11-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴 # 0)       (𝜑 → 0 < 𝐴)
 
Theoremapsub1 8586 Subtraction respects apartness. Analogue of subcan2 8169 for apartness. (Contributed by Jim Kingdon, 6-Jan-2022.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴𝐶) # (𝐵𝐶)))
 
Theoremsubap0 8587 Two numbers being apart is equivalent to their difference being apart from zero. (Contributed by Jim Kingdon, 25-Dec-2022.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) # 0 ↔ 𝐴 # 𝐵))
 
Theoremsubap0d 8588 Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.) (Proof shortened by BJ, 15-Aug-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 𝐵)       (𝜑 → (𝐴𝐵) # 0)
 
Theoremcnstab 8589 Equality of complex numbers is stable. Stability here means ¬ ¬ 𝐴 = 𝐵𝐴 = 𝐵 as defined at df-stab 831. This theorem for real numbers is Proposition 5.2 of [BauerHanson], p. 27. (Contributed by Jim Kingdon, 1-Aug-2023.) (Proof shortened by BJ, 15-Aug-2024.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → STAB 𝐴 = 𝐵)
 
Theoremaprcl 8590 Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
(𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
 
Theoremapsscn 8591* The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.)
{𝑥𝐴𝑥 # 𝐵} ⊆ ℂ
 
Theoremlt0ap0 8592 A number which is less than zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 # 0)
 
Theoremlt0ap0d 8593 A real number less than zero is apart from zero. Deduction form. (Contributed by Jim Kingdon, 24-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 0)       (𝜑𝐴 # 0)
 
4.3.7  Reciprocals
 
Theoremrecextlem1 8594 Lemma for recexap 8596. (Contributed by Eric Schmidt, 23-May-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
 
Theoremrecexaplem2 8595 Lemma for recexap 8596. (Contributed by Jim Kingdon, 20-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0)
 
Theoremrecexap 8596* Existence of reciprocal of nonzero complex number. (Contributed by Jim Kingdon, 20-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)
 
Theoremmulap0 8597 The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0)
 
Theoremmulap0b 8598 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0))
 
Theoremmulap0i 8599 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐴 # 0    &   𝐵 # 0       (𝐴 · 𝐵) # 0
 
Theoremmulap0bd 8600 The product of two numbers apart from zero is apart from zero. Exercise 11.11 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14478
  Copyright terms: Public domain < Previous  Next >