Theorem List for Intuitionistic Logic Explorer - 8501-8600   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | add20 8501 | 
Two nonnegative numbers are zero iff their sum is zero.  (Contributed by
     Jeff Madsen, 2-Sep-2009.)  (Proof shortened by Mario Carneiro,
     27-May-2016.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | 
|   | 
| Theorem | subge0 8502 | 
Nonnegative subtraction.  (Contributed by NM, 14-Mar-2005.)  (Proof
     shortened by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | 
|   | 
| Theorem | suble0 8503 | 
Nonpositive subtraction.  (Contributed by NM, 20-Mar-2008.)  (Proof
     shortened by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) | 
|   | 
| Theorem | leaddle0 8504 | 
The sum of a real number and a second real number is less then the real
     number iff the second real number is negative.  (Contributed by Alexander
     van der Vekens, 30-May-2018.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐴 ↔ 𝐵 ≤ 0)) | 
|   | 
| Theorem | subge02 8505 | 
Nonnegative subtraction.  (Contributed by NM, 27-Jul-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (𝐴 − 𝐵) ≤ 𝐴)) | 
|   | 
| Theorem | lesub0 8506 | 
Lemma to show a nonnegative number is zero.  (Contributed by NM,
     8-Oct-1999.)  (Proof shortened by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 𝐵 ≤ (𝐵 − 𝐴)) ↔ 𝐴 = 0)) | 
|   | 
| Theorem | mullt0 8507 | 
The product of two negative numbers is positive.  (Contributed by Jeff
     Hankins, 8-Jun-2009.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (𝐴 · 𝐵)) | 
|   | 
| Theorem | 0le1 8508 | 
0 is less than or equal to 1.  (Contributed by Mario Carneiro,
     29-Apr-2015.)
 | 
| ⊢ 0 ≤ 1 | 
|   | 
| Theorem | ltordlem 8509* | 
Lemma for eqord1 8510.  (Contributed by Mario Carneiro,
14-Jun-2014.)
 | 
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵)   
 &   ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀)   
 &   ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁)   
 &   ⊢ 𝑆 ⊆ ℝ    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ)    &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵))    ⇒   ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 < 𝐷 → 𝑀 < 𝑁)) | 
|   | 
| Theorem | eqord1 8510* | 
A strictly increasing real function on a subset of ℝ is
         one-to-one.  (Contributed by Mario Carneiro, 14-Jun-2014.)  (Revised
         by Jim Kingdon, 20-Dec-2022.)
 | 
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵)   
 &   ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀)   
 &   ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁)   
 &   ⊢ 𝑆 ⊆ ℝ    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ)    &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵))    ⇒   ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) | 
|   | 
| Theorem | eqord2 8511* | 
A strictly decreasing real function on a subset of ℝ is one-to-one.
       (Contributed by Mario Carneiro, 14-Jun-2014.)
 | 
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵)   
 &   ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀)   
 &   ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁)   
 &   ⊢ 𝑆 ⊆ ℝ    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ)    &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐵 < 𝐴))    ⇒   ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) | 
|   | 
| Theorem | leidi 8512 | 
'Less than or equal to' is reflexive.  (Contributed by NM,
       18-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ   
 ⇒   ⊢ 𝐴 ≤ 𝐴 | 
|   | 
| Theorem | gt0ne0i 8513 | 
Positive means nonzero (useful for ordering theorems involving
       division).  (Contributed by NM, 16-Sep-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ   
 ⇒   ⊢ (0 < 𝐴 → 𝐴 ≠ 0) | 
|   | 
| Theorem | gt0ne0ii 8514 | 
Positive implies nonzero.  (Contributed by NM, 15-May-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 0 < 𝐴    ⇒   ⊢ 𝐴 ≠ 0 | 
|   | 
| Theorem | addgt0i 8515 | 
Addition of 2 positive numbers is positive.  (Contributed by NM,
       16-May-1999.)  (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 + 𝐵)) | 
|   | 
| Theorem | addge0i 8516 | 
Addition of 2 nonnegative numbers is nonnegative.  (Contributed by NM,
       28-May-1999.)  (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 + 𝐵)) | 
|   | 
| Theorem | addgegt0i 8517 | 
Addition of nonnegative and positive numbers is positive.  (Contributed
       by NM, 25-Sep-1999.)  (Revised by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ ((0 ≤ 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 + 𝐵)) | 
|   | 
| Theorem | addgt0ii 8518 | 
Addition of 2 positive numbers is positive.  (Contributed by NM,
         18-May-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈ ℝ    &   ⊢ 0 < 𝐴    &   ⊢ 0 < 𝐵    ⇒   ⊢ 0 < (𝐴 + 𝐵) | 
|   | 
| Theorem | add20i 8519 | 
Two nonnegative numbers are zero iff their sum is zero.  (Contributed by
       NM, 28-Jul-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | 
|   | 
| Theorem | ltnegi 8520 | 
Negative of both sides of 'less than'.  Theorem I.23 of [Apostol] p. 20.
       (Contributed by NM, 21-Jan-1997.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ (𝐴 < 𝐵 ↔ -𝐵 < -𝐴) | 
|   | 
| Theorem | lenegi 8521 | 
Negative of both sides of 'less than or equal to'.  (Contributed by NM,
       1-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴) | 
|   | 
| Theorem | ltnegcon2i 8522 | 
Contraposition of negative in 'less than'.  (Contributed by NM,
       14-May-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ (𝐴 < -𝐵 ↔ 𝐵 < -𝐴) | 
|   | 
| Theorem | lesub0i 8523 | 
Lemma to show a nonnegative number is zero.  (Contributed by NM,
       8-Oct-1999.)  (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ (𝐵 − 𝐴)) ↔ 𝐴 = 0) | 
|   | 
| Theorem | ltaddposi 8524 | 
Adding a positive number to another number increases it.  (Contributed
       by NM, 25-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴)) | 
|   | 
| Theorem | posdifi 8525 | 
Comparison of two numbers whose difference is positive.  (Contributed by
       NM, 19-Aug-2001.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴)) | 
|   | 
| Theorem | ltnegcon1i 8526 | 
Contraposition of negative in 'less than'.  (Contributed by NM,
       14-May-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ (-𝐴 < 𝐵 ↔ -𝐵 < 𝐴) | 
|   | 
| Theorem | lenegcon1i 8527 | 
Contraposition of negative in 'less than or equal to'.  (Contributed by
       NM, 6-Apr-2005.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ (-𝐴 ≤ 𝐵 ↔ -𝐵 ≤ 𝐴) | 
|   | 
| Theorem | subge0i 8528 | 
Nonnegative subtraction.  (Contributed by NM, 13-Aug-2000.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴) | 
|   | 
| Theorem | ltadd1i 8529 | 
Addition to both sides of 'less than'.  Theorem I.18 of [Apostol] p. 20.
       (Contributed by NM, 21-Jan-1997.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈ ℝ    &   ⊢ 𝐶 ∈
 ℝ    ⇒   ⊢ (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶)) | 
|   | 
| Theorem | leadd1i 8530 | 
Addition to both sides of 'less than or equal to'.  (Contributed by NM,
       11-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈ ℝ    &   ⊢ 𝐶 ∈
 ℝ    ⇒   ⊢ (𝐴 ≤ 𝐵 ↔ (𝐴 + 𝐶) ≤ (𝐵 + 𝐶)) | 
|   | 
| Theorem | leadd2i 8531 | 
Addition to both sides of 'less than or equal to'.  (Contributed by NM,
       11-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈ ℝ    &   ⊢ 𝐶 ∈
 ℝ    ⇒   ⊢ (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) | 
|   | 
| Theorem | ltsubaddi 8532 | 
'Less than' relationship between subtraction and addition.  (Contributed
       by NM, 21-Jan-1997.)  (Proof shortened by Andrew Salmon,
       19-Nov-2011.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈ ℝ    &   ⊢ 𝐶 ∈
 ℝ    ⇒   ⊢ ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 + 𝐵)) | 
|   | 
| Theorem | lesubaddi 8533 | 
'Less than or equal to' relationship between subtraction and addition.
       (Contributed by NM, 30-Sep-1999.)  (Proof shortened by Andrew Salmon,
       19-Nov-2011.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈ ℝ    &   ⊢ 𝐶 ∈
 ℝ    ⇒   ⊢ ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵)) | 
|   | 
| Theorem | ltsubadd2i 8534 | 
'Less than' relationship between subtraction and addition.  (Contributed
       by NM, 21-Jan-1997.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈ ℝ    &   ⊢ 𝐶 ∈
 ℝ    ⇒   ⊢ ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐵 + 𝐶)) | 
|   | 
| Theorem | lesubadd2i 8535 | 
'Less than or equal to' relationship between subtraction and addition.
       (Contributed by NM, 3-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈ ℝ    &   ⊢ 𝐶 ∈
 ℝ    ⇒   ⊢ ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐵 + 𝐶)) | 
|   | 
| Theorem | ltaddsubi 8536 | 
'Less than' relationship between subtraction and addition.  (Contributed
       by NM, 14-May-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈ ℝ    &   ⊢ 𝐶 ∈
 ℝ    ⇒   ⊢ ((𝐴 + 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 − 𝐵)) | 
|   | 
| Theorem | lt2addi 8537 | 
Adding both side of two inequalities.  Theorem I.25 of [Apostol] p. 20.
       (Contributed by NM, 14-May-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈ ℝ    &   ⊢ 𝐶 ∈ ℝ    &   ⊢ 𝐷 ∈
 ℝ    ⇒   ⊢ ((𝐴 < 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | 
|   | 
| Theorem | le2addi 8538 | 
Adding both side of two inequalities.  (Contributed by NM,
       16-Sep-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈ ℝ    &   ⊢ 𝐶 ∈ ℝ    &   ⊢ 𝐷 ∈
 ℝ    ⇒   ⊢ ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) | 
|   | 
| Theorem | gt0ne0d 8539 | 
Positive implies nonzero.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 0 < 𝐴)    ⇒   ⊢ (𝜑 → 𝐴 ≠ 0) | 
|   | 
| Theorem | lt0ne0d 8540 | 
Something less than zero is not zero.  Deduction form.  See also
       lt0ap0d 8676 which is similar but for apartness. 
(Contributed by David
       Moews, 28-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐴 < 0)    ⇒   ⊢ (𝜑 → 𝐴 ≠ 0) | 
|   | 
| Theorem | leidd 8541 | 
'Less than or equal to' is reflexive.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → 𝐴 ≤ 𝐴) | 
|   | 
| Theorem | lt0neg1d 8542 | 
Comparison of a number and its negative to zero.  Theorem I.23 of
       [Apostol] p. 20.  (Contributed by Mario
Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴)) | 
|   | 
| Theorem | lt0neg2d 8543 | 
Comparison of a number and its negative to zero.  (Contributed by Mario
       Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (0 < 𝐴 ↔ -𝐴 < 0)) | 
|   | 
| Theorem | le0neg1d 8544 | 
Comparison of a number and its negative to zero.  (Contributed by Mario
       Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) | 
|   | 
| Theorem | le0neg2d 8545 | 
Comparison of a number and its negative to zero.  (Contributed by Mario
       Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0)) | 
|   | 
| Theorem | addgegt0d 8546 | 
Addition of nonnegative and positive numbers is positive.
         (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 0 ≤ 𝐴)   
 &   ⊢ (𝜑 → 0 < 𝐵)    ⇒   ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) | 
|   | 
| Theorem | addgtge0d 8547 | 
Addition of positive and nonnegative numbers is positive.
         (Contributed by Asger C. Ipsen, 12-May-2021.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 0 < 𝐴)   
 &   ⊢ (𝜑 → 0 ≤ 𝐵)    ⇒   ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) | 
|   | 
| Theorem | addgt0d 8548 | 
Addition of 2 positive numbers is positive.  (Contributed by Mario
         Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 0 < 𝐴)   
 &   ⊢ (𝜑 → 0 < 𝐵)    ⇒   ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) | 
|   | 
| Theorem | addge0d 8549 | 
Addition of 2 nonnegative numbers is nonnegative.  (Contributed by
         Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 0 ≤ 𝐴)   
 &   ⊢ (𝜑 → 0 ≤ 𝐵)    ⇒   ⊢ (𝜑 → 0 ≤ (𝐴 + 𝐵)) | 
|   | 
| Theorem | ltnegd 8550 | 
Negative of both sides of 'less than'.  Theorem I.23 of [Apostol] p. 20.
       (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴)) | 
|   | 
| Theorem | lenegd 8551 | 
Negative of both sides of 'less than or equal to'.  (Contributed by
       Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) | 
|   | 
| Theorem | ltnegcon1d 8552 | 
Contraposition of negative in 'less than'.  (Contributed by Mario
         Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → -𝐴 < 𝐵)    ⇒   ⊢ (𝜑 → -𝐵 < 𝐴) | 
|   | 
| Theorem | ltnegcon2d 8553 | 
Contraposition of negative in 'less than'.  (Contributed by Mario
         Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 < -𝐵)    ⇒   ⊢ (𝜑 → 𝐵 < -𝐴) | 
|   | 
| Theorem | lenegcon1d 8554 | 
Contraposition of negative in 'less than or equal to'.  (Contributed
         by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → -𝐴 ≤ 𝐵)    ⇒   ⊢ (𝜑 → -𝐵 ≤ 𝐴) | 
|   | 
| Theorem | lenegcon2d 8555 | 
Contraposition of negative in 'less than or equal to'.  (Contributed
         by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 ≤ -𝐵)    ⇒   ⊢ (𝜑 → 𝐵 ≤ -𝐴) | 
|   | 
| Theorem | ltaddposd 8556 | 
Adding a positive number to another number increases it.  (Contributed
       by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) | 
|   | 
| Theorem | ltaddpos2d 8557 | 
Adding a positive number to another number increases it.  (Contributed
       by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (0 < 𝐴 ↔ 𝐵 < (𝐴 + 𝐵))) | 
|   | 
| Theorem | ltsubposd 8558 | 
Subtracting a positive number from another number decreases it.
       (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (0 < 𝐴 ↔ (𝐵 − 𝐴) < 𝐵)) | 
|   | 
| Theorem | posdifd 8559 | 
Comparison of two numbers whose difference is positive.  (Contributed by
       Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) | 
|   | 
| Theorem | addge01d 8560 | 
A number is less than or equal to itself plus a nonnegative number.
       (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) | 
|   | 
| Theorem | addge02d 8561 | 
A number is less than or equal to itself plus a nonnegative number.
       (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 + 𝐴))) | 
|   | 
| Theorem | subge0d 8562 | 
Nonnegative subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | 
|   | 
| Theorem | suble0d 8563 | 
Nonpositive subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) | 
|   | 
| Theorem | subge02d 8564 | 
Nonnegative subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (0 ≤ 𝐵 ↔ (𝐴 − 𝐵) ≤ 𝐴)) | 
|   | 
| Theorem | ltadd1d 8565 | 
Addition to both sides of 'less than'.  Theorem I.18 of [Apostol] p. 20.
       (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶))) | 
|   | 
| Theorem | leadd1d 8566 | 
Addition to both sides of 'less than or equal to'.  (Contributed by
       Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 + 𝐶) ≤ (𝐵 + 𝐶))) | 
|   | 
| Theorem | leadd2d 8567 | 
Addition to both sides of 'less than or equal to'.  (Contributed by
       Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) | 
|   | 
| Theorem | ltsubaddd 8568 | 
'Less than' relationship between subtraction and addition.  (Contributed
       by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 + 𝐵))) | 
|   | 
| Theorem | lesubaddd 8569 | 
'Less than or equal to' relationship between subtraction and addition.
       (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) | 
|   | 
| Theorem | ltsubadd2d 8570 | 
'Less than' relationship between subtraction and addition.  (Contributed
       by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐵 + 𝐶))) | 
|   | 
| Theorem | lesubadd2d 8571 | 
'Less than or equal to' relationship between subtraction and addition.
       (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐵 + 𝐶))) | 
|   | 
| Theorem | ltaddsubd 8572 | 
'Less than' relationship between subtraction and addition.  (Contributed
       by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 − 𝐵))) | 
|   | 
| Theorem | ltaddsub2d 8573 | 
'Less than' relationship between subtraction and addition.  (Contributed
       by Mario Carneiro, 29-Dec-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐵 < (𝐶 − 𝐴))) | 
|   | 
| Theorem | leaddsub2d 8574 | 
'Less than or equal to' relationship between and addition and
       subtraction.  (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐵 ≤ (𝐶 − 𝐴))) | 
|   | 
| Theorem | subled 8575 | 
Swap subtrahends in an inequality.  (Contributed by Mario Carneiro,
         27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → (𝐴 − 𝐵) ≤ 𝐶)    ⇒   ⊢ (𝜑 → (𝐴 − 𝐶) ≤ 𝐵) | 
|   | 
| Theorem | lesubd 8576 | 
Swap subtrahends in an inequality.  (Contributed by Mario Carneiro,
         27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 ≤ (𝐵 − 𝐶))    ⇒   ⊢ (𝜑 → 𝐶 ≤ (𝐵 − 𝐴)) | 
|   | 
| Theorem | ltsub23d 8577 | 
'Less than' relationship between subtraction and addition.
         (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐶)    ⇒   ⊢ (𝜑 → (𝐴 − 𝐶) < 𝐵) | 
|   | 
| Theorem | ltsub13d 8578 | 
'Less than' relationship between subtraction and addition.
         (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 < (𝐵 − 𝐶))    ⇒   ⊢ (𝜑 → 𝐶 < (𝐵 − 𝐴)) | 
|   | 
| Theorem | lesub1d 8579 | 
Subtraction from both sides of 'less than or equal to'.  (Contributed by
       Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝐶) ≤ (𝐵 − 𝐶))) | 
|   | 
| Theorem | lesub2d 8580 | 
Subtraction of both sides of 'less than or equal to'.  (Contributed by
       Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 − 𝐵) ≤ (𝐶 − 𝐴))) | 
|   | 
| Theorem | ltsub1d 8581 | 
Subtraction from both sides of 'less than'.  (Contributed by Mario
       Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 − 𝐶) < (𝐵 − 𝐶))) | 
|   | 
| Theorem | ltsub2d 8582 | 
Subtraction of both sides of 'less than'.  (Contributed by Mario
       Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 − 𝐵) < (𝐶 − 𝐴))) | 
|   | 
| Theorem | ltadd1dd 8583 | 
Addition to both sides of 'less than'.  Theorem I.18 of [Apostol]
         p. 20.  (Contributed by Mario Carneiro, 30-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 < 𝐵)    ⇒   ⊢ (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶)) | 
|   | 
| Theorem | ltsub1dd 8584 | 
Subtraction from both sides of 'less than'.  (Contributed by Mario
         Carneiro, 30-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 < 𝐵)    ⇒   ⊢ (𝜑 → (𝐴 − 𝐶) < (𝐵 − 𝐶)) | 
|   | 
| Theorem | ltsub2dd 8585 | 
Subtraction of both sides of 'less than'.  (Contributed by Mario
         Carneiro, 30-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 < 𝐵)    ⇒   ⊢ (𝜑 → (𝐶 − 𝐵) < (𝐶 − 𝐴)) | 
|   | 
| Theorem | leadd1dd 8586 | 
Addition to both sides of 'less than or equal to'.  (Contributed by
         Mario Carneiro, 30-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 ≤ 𝐵)    ⇒   ⊢ (𝜑 → (𝐴 + 𝐶) ≤ (𝐵 + 𝐶)) | 
|   | 
| Theorem | leadd2dd 8587 | 
Addition to both sides of 'less than or equal to'.  (Contributed by
         Mario Carneiro, 30-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 ≤ 𝐵)    ⇒   ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) | 
|   | 
| Theorem | lesub1dd 8588 | 
Subtraction from both sides of 'less than or equal to'.  (Contributed
         by Mario Carneiro, 30-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 ≤ 𝐵)    ⇒   ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) | 
|   | 
| Theorem | lesub2dd 8589 | 
Subtraction of both sides of 'less than or equal to'.  (Contributed by
         Mario Carneiro, 30-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 ≤ 𝐵)    ⇒   ⊢ (𝜑 → (𝐶 − 𝐵) ≤ (𝐶 − 𝐴)) | 
|   | 
| Theorem | le2addd 8590 | 
Adding both side of two inequalities.  (Contributed by Mario Carneiro,
         27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐷 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 ≤ 𝐶)   
 &   ⊢ (𝜑 → 𝐵 ≤ 𝐷)    ⇒   ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) | 
|   | 
| Theorem | le2subd 8591 | 
Subtracting both sides of two 'less than or equal to' relations.
         (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐷 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 ≤ 𝐶)   
 &   ⊢ (𝜑 → 𝐵 ≤ 𝐷)    ⇒   ⊢ (𝜑 → (𝐴 − 𝐷) ≤ (𝐶 − 𝐵)) | 
|   | 
| Theorem | ltleaddd 8592 | 
Adding both sides of two orderings.  (Contributed by Mario Carneiro,
         27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐷 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 < 𝐶)   
 &   ⊢ (𝜑 → 𝐵 ≤ 𝐷)    ⇒   ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | 
|   | 
| Theorem | leltaddd 8593 | 
Adding both sides of two orderings.  (Contributed by Mario Carneiro,
         27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐷 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 ≤ 𝐶)   
 &   ⊢ (𝜑 → 𝐵 < 𝐷)    ⇒   ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | 
|   | 
| Theorem | lt2addd 8594 | 
Adding both side of two inequalities.  Theorem I.25 of [Apostol]
         p. 20.  (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐷 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 < 𝐶)   
 &   ⊢ (𝜑 → 𝐵 < 𝐷)    ⇒   ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | 
|   | 
| Theorem | lt2subd 8595 | 
Subtracting both sides of two 'less than' relations.  (Contributed by
         Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐷 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 < 𝐶)   
 &   ⊢ (𝜑 → 𝐵 < 𝐷)    ⇒   ⊢ (𝜑 → (𝐴 − 𝐷) < (𝐶 − 𝐵)) | 
|   | 
| Theorem | possumd 8596 | 
Condition for a positive sum.  (Contributed by Scott Fenton,
       16-Dec-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (0 < (𝐴 + 𝐵) ↔ -𝐵 < 𝐴)) | 
|   | 
| Theorem | sublt0d 8597 | 
When a subtraction gives a negative result.  (Contributed by Glauco
       Siliprandi, 11-Dec-2019.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) < 0 ↔ 𝐴 < 𝐵)) | 
|   | 
| Theorem | ltaddsublt 8598 | 
Addition and subtraction on one side of 'less than'.  (Contributed by AV,
     24-Nov-2018.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ ((𝐴 + 𝐵) − 𝐶) < 𝐴)) | 
|   | 
| Theorem | 1le1 8599 | 
1 ≤ 1.  Common special case.  (Contributed by David
A. Wheeler,
     16-Jul-2016.)
 | 
| ⊢ 1 ≤ 1 | 
|   | 
| Theorem | gt0add 8600 | 
A positive sum must have a positive addend.  Part of Definition 11.2.7(vi)
     of [HoTT], p.  (varies).  (Contributed by Jim
Kingdon, 26-Jan-2020.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐴 ∨ 0 < 𝐵)) |