ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-scaf GIF version

Definition df-scaf 13846
Description: Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 13844 . 2 class ·sf
2 vg . . 3 setvar 𝑔
3 cvv 2763 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1363 . . . . . 6 class 𝑔
7 csca 12758 . . . . . 6 class Scalar
86, 7cfv 5258 . . . . 5 class (Scalar‘𝑔)
9 cbs 12678 . . . . 5 class Base
108, 9cfv 5258 . . . 4 class (Base‘(Scalar‘𝑔))
116, 9cfv 5258 . . . 4 class (Base‘𝑔)
124cv 1363 . . . . 5 class 𝑥
135cv 1363 . . . . 5 class 𝑦
14 cvsca 12759 . . . . . 6 class ·𝑠
156, 14cfv 5258 . . . . 5 class ( ·𝑠𝑔)
1612, 13, 15co 5922 . . . 4 class (𝑥( ·𝑠𝑔)𝑦)
174, 5, 10, 11, 16cmpo 5924 . . 3 class (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦))
182, 3, 17cmpt 4094 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
191, 18wceq 1364 1 wff ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Colors of variables: wff set class
This definition is referenced by:  scaffvalg  13862
  Copyright terms: Public domain W3C validator