ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-scaf GIF version

Definition df-scaf 14262
Description: Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 14260 . 2 class ·sf
2 vg . . 3 setvar 𝑔
3 cvv 2799 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1394 . . . . . 6 class 𝑔
7 csca 13121 . . . . . 6 class Scalar
86, 7cfv 5318 . . . . 5 class (Scalar‘𝑔)
9 cbs 13040 . . . . 5 class Base
108, 9cfv 5318 . . . 4 class (Base‘(Scalar‘𝑔))
116, 9cfv 5318 . . . 4 class (Base‘𝑔)
124cv 1394 . . . . 5 class 𝑥
135cv 1394 . . . . 5 class 𝑦
14 cvsca 13122 . . . . . 6 class ·𝑠
156, 14cfv 5318 . . . . 5 class ( ·𝑠𝑔)
1612, 13, 15co 6007 . . . 4 class (𝑥( ·𝑠𝑔)𝑦)
174, 5, 10, 11, 16cmpo 6009 . . 3 class (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦))
182, 3, 17cmpt 4145 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
191, 18wceq 1395 1 wff ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Colors of variables: wff set class
This definition is referenced by:  scaffvalg  14278
  Copyright terms: Public domain W3C validator