ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-scaf GIF version

Definition df-scaf 14102
Description: Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 14100 . 2 class ·sf
2 vg . . 3 setvar 𝑔
3 cvv 2773 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1372 . . . . . 6 class 𝑔
7 csca 12962 . . . . . 6 class Scalar
86, 7cfv 5277 . . . . 5 class (Scalar‘𝑔)
9 cbs 12882 . . . . 5 class Base
108, 9cfv 5277 . . . 4 class (Base‘(Scalar‘𝑔))
116, 9cfv 5277 . . . 4 class (Base‘𝑔)
124cv 1372 . . . . 5 class 𝑥
135cv 1372 . . . . 5 class 𝑦
14 cvsca 12963 . . . . . 6 class ·𝑠
156, 14cfv 5277 . . . . 5 class ( ·𝑠𝑔)
1612, 13, 15co 5954 . . . 4 class (𝑥( ·𝑠𝑔)𝑦)
174, 5, 10, 11, 16cmpo 5956 . . 3 class (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦))
182, 3, 17cmpt 4110 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
191, 18wceq 1373 1 wff ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Colors of variables: wff set class
This definition is referenced by:  scaffvalg  14118
  Copyright terms: Public domain W3C validator