ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-scaf GIF version

Definition df-scaf 14239
Description: Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 14237 . 2 class ·sf
2 vg . . 3 setvar 𝑔
3 cvv 2799 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1394 . . . . . 6 class 𝑔
7 csca 13099 . . . . . 6 class Scalar
86, 7cfv 5314 . . . . 5 class (Scalar‘𝑔)
9 cbs 13018 . . . . 5 class Base
108, 9cfv 5314 . . . 4 class (Base‘(Scalar‘𝑔))
116, 9cfv 5314 . . . 4 class (Base‘𝑔)
124cv 1394 . . . . 5 class 𝑥
135cv 1394 . . . . 5 class 𝑦
14 cvsca 13100 . . . . . 6 class ·𝑠
156, 14cfv 5314 . . . . 5 class ( ·𝑠𝑔)
1612, 13, 15co 5994 . . . 4 class (𝑥( ·𝑠𝑔)𝑦)
174, 5, 10, 11, 16cmpo 5996 . . 3 class (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦))
182, 3, 17cmpt 4144 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
191, 18wceq 1395 1 wff ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Colors of variables: wff set class
This definition is referenced by:  scaffvalg  14255
  Copyright terms: Public domain W3C validator