ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-scaf GIF version

Definition df-scaf 13603
Description: Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 13601 . 2 class ·sf
2 vg . . 3 setvar 𝑔
3 cvv 2752 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1363 . . . . . 6 class 𝑔
7 csca 12589 . . . . . 6 class Scalar
86, 7cfv 5235 . . . . 5 class (Scalar‘𝑔)
9 cbs 12511 . . . . 5 class Base
108, 9cfv 5235 . . . 4 class (Base‘(Scalar‘𝑔))
116, 9cfv 5235 . . . 4 class (Base‘𝑔)
124cv 1363 . . . . 5 class 𝑥
135cv 1363 . . . . 5 class 𝑦
14 cvsca 12590 . . . . . 6 class ·𝑠
156, 14cfv 5235 . . . . 5 class ( ·𝑠𝑔)
1612, 13, 15co 5895 . . . 4 class (𝑥( ·𝑠𝑔)𝑦)
174, 5, 10, 11, 16cmpo 5897 . . 3 class (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦))
182, 3, 17cmpt 4079 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
191, 18wceq 1364 1 wff ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Colors of variables: wff set class
This definition is referenced by:  scaffvalg  13619
  Copyright terms: Public domain W3C validator