Step | Hyp | Ref
| Expression |
1 | | elex 2760 |
. . . 4
⊢ (𝑊 ∈ Grp → 𝑊 ∈ V) |
2 | | islmod.v |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑊) |
3 | | basfn 12534 |
. . . . . . . 8
⊢ Base Fn
V |
4 | | funfvex 5544 |
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑊 ∈ dom
Base) → (Base‘𝑊)
∈ V) |
5 | 4 | funfni 5328 |
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑊 ∈ V) →
(Base‘𝑊) ∈
V) |
6 | 3, 5 | mpan 424 |
. . . . . . 7
⊢ (𝑊 ∈ V →
(Base‘𝑊) ∈
V) |
7 | 2, 6 | eqeltrid 2274 |
. . . . . 6
⊢ (𝑊 ∈ V → 𝑉 ∈ V) |
8 | | islmod.a |
. . . . . . . . 9
⊢ + =
(+g‘𝑊) |
9 | | plusgslid 12586 |
. . . . . . . . . 10
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
10 | 9 | slotex 12503 |
. . . . . . . . 9
⊢ (𝑊 ∈ V →
(+g‘𝑊)
∈ V) |
11 | 8, 10 | eqeltrid 2274 |
. . . . . . . 8
⊢ (𝑊 ∈ V → + ∈
V) |
12 | 11 | adantr 276 |
. . . . . . 7
⊢ ((𝑊 ∈ V ∧ 𝑣 = 𝑉) → + ∈ V) |
13 | | islmod.f |
. . . . . . . . . . 11
⊢ 𝐹 = (Scalar‘𝑊) |
14 | | scaslid 12626 |
. . . . . . . . . . . 12
⊢ (Scalar =
Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈
ℕ) |
15 | 14 | slotex 12503 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ V →
(Scalar‘𝑊) ∈
V) |
16 | 13, 15 | eqeltrid 2274 |
. . . . . . . . . 10
⊢ (𝑊 ∈ V → 𝐹 ∈ V) |
17 | 16 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑊 ∈ V ∧ (𝑣 = 𝑉 ∧ 𝑎 = + )) → 𝐹 ∈ V) |
18 | | simplrl 535 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ V ∧ (𝑣 = 𝑉 ∧ 𝑎 = + )) ∧ 𝑓 = 𝐹) → 𝑣 = 𝑉) |
19 | | simplrr 536 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ V ∧ (𝑣 = 𝑉 ∧ 𝑎 = + )) ∧ 𝑓 = 𝐹) → 𝑎 = + ) |
20 | | simpr 110 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ V ∧ (𝑣 = 𝑉 ∧ 𝑎 = + )) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) |
21 | | simp3 1000 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) |
22 | 21 | fveq2d 5531 |
. . . . . . . . . . . . 13
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹)) |
23 | | islmod.k |
. . . . . . . . . . . . 13
⊢ 𝐾 = (Base‘𝐹) |
24 | 22, 23 | eqtr4di 2238 |
. . . . . . . . . . . 12
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (Base‘𝑓) = 𝐾) |
25 | 18, 19, 20, 24 | syl3anc 1248 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ V ∧ (𝑣 = 𝑉 ∧ 𝑎 = + )) ∧ 𝑓 = 𝐹) → (Base‘𝑓) = 𝐾) |
26 | 21 | fveq2d 5531 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (+g‘𝑓) = (+g‘𝐹)) |
27 | | islmod.p |
. . . . . . . . . . . . . 14
⊢ ⨣ =
(+g‘𝐹) |
28 | 26, 27 | eqtr4di 2238 |
. . . . . . . . . . . . 13
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (+g‘𝑓) = ⨣ ) |
29 | 18, 19, 20, 28 | syl3anc 1248 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ V ∧ (𝑣 = 𝑉 ∧ 𝑎 = + )) ∧ 𝑓 = 𝐹) → (+g‘𝑓) = ⨣ ) |
30 | 21 | fveq2d 5531 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (.r‘𝑓) = (.r‘𝐹)) |
31 | | islmod.t |
. . . . . . . . . . . . . . . 16
⊢ × =
(.r‘𝐹) |
32 | 30, 31 | eqtr4di 2238 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (.r‘𝑓) = × ) |
33 | 32 | sbceq1d 2979 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → ([(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ [ × / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))))) |
34 | 18, 19, 20, 33 | syl3anc 1248 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ V ∧ (𝑣 = 𝑉 ∧ 𝑎 = + )) ∧ 𝑓 = 𝐹) → ([(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ [ × / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))))) |
35 | | simpll 527 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ V ∧ (𝑣 = 𝑉 ∧ 𝑎 = + )) ∧ 𝑓 = 𝐹) → 𝑊 ∈ V) |
36 | | mulrslid 12605 |
. . . . . . . . . . . . . . . . . . 19
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) |
37 | 36 | slotex 12503 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ V →
(.r‘𝐹)
∈ V) |
38 | 16, 37 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ V →
(.r‘𝐹)
∈ V) |
39 | 31, 38 | eqeltrid 2274 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊 ∈ V → × ∈
V) |
40 | | oveq 5894 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = × → (𝑞𝑡𝑟) = (𝑞 × 𝑟)) |
41 | 40 | oveq1d 5903 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = × → ((𝑞𝑡𝑟)𝑠𝑤) = ((𝑞 × 𝑟)𝑠𝑤)) |
42 | 41 | eqeq1d 2196 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = × → (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ↔ ((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)))) |
43 | 42 | anbi1d 465 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = × → ((((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤) ↔ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) |
44 | 43 | anbi2d 464 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = × → ((((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)) ↔ (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))) |
45 | 44 | 2ralbidv 2511 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = × →
(∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)) ↔ ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))) |
46 | 45 | 2ralbidv 2511 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = × →
(∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)) ↔ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))) |
47 | 46 | anbi2d 464 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = × → ((𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ (𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))))) |
48 | 47 | adantl 277 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ V ∧ 𝑡 = × ) → ((𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ (𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))))) |
49 | 39, 48 | sbcied 3011 |
. . . . . . . . . . . . . . 15
⊢ (𝑊 ∈ V → ([ × / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ (𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))))) |
50 | 21 | eleq1d 2256 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (𝑓 ∈ Ring ↔ 𝐹 ∈ Ring)) |
51 | | simp1 998 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → 𝑣 = 𝑉) |
52 | 51 | eleq2d 2257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → ((𝑟𝑠𝑤) ∈ 𝑣 ↔ (𝑟𝑠𝑤) ∈ 𝑉)) |
53 | | simp2 999 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → 𝑎 = + ) |
54 | 53 | oveqd 5905 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (𝑤𝑎𝑥) = (𝑤 + 𝑥)) |
55 | 54 | oveq2d 5904 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (𝑟𝑠(𝑤𝑎𝑥)) = (𝑟𝑠(𝑤 + 𝑥))) |
56 | 53 | oveqd 5905 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥))) |
57 | 55, 56 | eqeq12d 2202 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → ((𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ↔ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)))) |
58 | 53 | oveqd 5905 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤)) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) |
59 | 58 | eqeq2d 2199 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤)) ↔ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤)))) |
60 | 52, 57, 59 | 3anbi123d 1322 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ↔ ((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))))) |
61 | 21 | fveq2d 5531 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (1r‘𝑓) = (1r‘𝐹)) |
62 | | islmod.u |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 =
(1r‘𝐹) |
63 | 61, 62 | eqtr4di 2238 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (1r‘𝑓) = 1 ) |
64 | 63 | oveq1d 5903 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → ((1r‘𝑓)𝑠𝑤) = ( 1 𝑠𝑤)) |
65 | 64 | eqeq1d 2196 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (((1r‘𝑓)𝑠𝑤) = 𝑤 ↔ ( 1 𝑠𝑤) = 𝑤)) |
66 | 65 | anbi2d 464 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → ((((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤) ↔ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))) |
67 | 60, 66 | anbi12d 473 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → ((((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)) ↔ (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))) |
68 | 51, 67 | raleqbidv 2695 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)) ↔ ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))) |
69 | 51, 68 | raleqbidv 2695 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)) ↔ ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))) |
70 | 69 | 2ralbidv 2511 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → (∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)) ↔ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))) |
71 | 50, 70 | anbi12d 473 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹) → ((𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))))) |
72 | 49, 71 | sylan9bb 462 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ V ∧ (𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹)) → ([ × / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))))) |
73 | 35, 18, 19, 20, 72 | syl13anc 1250 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ V ∧ (𝑣 = 𝑉 ∧ 𝑎 = + )) ∧ 𝑓 = 𝐹) → ([ × / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))))) |
74 | 34, 73 | bitrd 188 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ V ∧ (𝑣 = 𝑉 ∧ 𝑎 = + )) ∧ 𝑓 = 𝐹) → ([(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))))) |
75 | 29, 74 | sbceqbid 2981 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ V ∧ (𝑣 = 𝑉 ∧ 𝑎 = + )) ∧ 𝑓 = 𝐹) → ([(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ [ ⨣ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))))) |
76 | 25, 75 | sbceqbid 2981 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ V ∧ (𝑣 = 𝑉 ∧ 𝑎 = + )) ∧ 𝑓 = 𝐹) → ([(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ [𝐾 / 𝑘][ ⨣ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))))) |
77 | 76 | sbcbidv 3033 |
. . . . . . . . 9
⊢ (((𝑊 ∈ V ∧ (𝑣 = 𝑉 ∧ 𝑎 = + )) ∧ 𝑓 = 𝐹) → ([ · / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ [ · / 𝑠][𝐾 / 𝑘][ ⨣ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))))) |
78 | 17, 77 | sbcied 3011 |
. . . . . . . 8
⊢ ((𝑊 ∈ V ∧ (𝑣 = 𝑉 ∧ 𝑎 = + )) → ([𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ [ · / 𝑠][𝐾 / 𝑘][ ⨣ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))))) |
79 | 78 | anassrs 400 |
. . . . . . 7
⊢ (((𝑊 ∈ V ∧ 𝑣 = 𝑉) ∧ 𝑎 = + ) → ([𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ [ · / 𝑠][𝐾 / 𝑘][ ⨣ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))))) |
80 | 12, 79 | sbcied 3011 |
. . . . . 6
⊢ ((𝑊 ∈ V ∧ 𝑣 = 𝑉) → ([ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ [ · / 𝑠][𝐾 / 𝑘][ ⨣ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))))) |
81 | 7, 80 | sbcied 3011 |
. . . . 5
⊢ (𝑊 ∈ V → ([𝑉 / 𝑣][ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ [ · / 𝑠][𝐾 / 𝑘][ ⨣ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))))) |
82 | | islmod.s |
. . . . . . 7
⊢ · = (
·𝑠 ‘𝑊) |
83 | | vscaslid 12636 |
. . . . . . . 8
⊢ (
·𝑠 = Slot (
·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
84 | 83 | slotex 12503 |
. . . . . . 7
⊢ (𝑊 ∈ V → (
·𝑠 ‘𝑊) ∈ V) |
85 | 82, 84 | eqeltrid 2274 |
. . . . . 6
⊢ (𝑊 ∈ V → · ∈
V) |
86 | | funfvex 5544 |
. . . . . . . . . . 11
⊢ ((Fun
Base ∧ 𝐹 ∈ dom
Base) → (Base‘𝐹)
∈ V) |
87 | 86 | funfni 5328 |
. . . . . . . . . 10
⊢ ((Base Fn
V ∧ 𝐹 ∈ V) →
(Base‘𝐹) ∈
V) |
88 | 3, 16, 87 | sylancr 414 |
. . . . . . . . 9
⊢ (𝑊 ∈ V →
(Base‘𝐹) ∈
V) |
89 | 23, 88 | eqeltrid 2274 |
. . . . . . . 8
⊢ (𝑊 ∈ V → 𝐾 ∈ V) |
90 | 89 | adantr 276 |
. . . . . . 7
⊢ ((𝑊 ∈ V ∧ 𝑠 = · ) → 𝐾 ∈ V) |
91 | 9 | slotex 12503 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ V →
(+g‘𝐹)
∈ V) |
92 | 16, 91 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ V →
(+g‘𝐹)
∈ V) |
93 | 27, 92 | eqeltrid 2274 |
. . . . . . . . . 10
⊢ (𝑊 ∈ V → ⨣ ∈
V) |
94 | 93 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑊 ∈ V ∧ (𝑠 = · ∧ 𝑘 = 𝐾)) → ⨣ ∈
V) |
95 | | simp2 999 |
. . . . . . . . . . . . 13
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → 𝑘 = 𝐾) |
96 | | simp1 998 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → 𝑠 = · ) |
97 | 96 | oveqd 5905 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → (𝑟𝑠𝑤) = (𝑟 · 𝑤)) |
98 | 97 | eleq1d 2256 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ((𝑟𝑠𝑤) ∈ 𝑉 ↔ (𝑟 · 𝑤) ∈ 𝑉)) |
99 | 96 | oveqd 5905 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → (𝑟𝑠(𝑤 + 𝑥)) = (𝑟 · (𝑤 + 𝑥))) |
100 | 96 | oveqd 5905 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → (𝑟𝑠𝑥) = (𝑟 · 𝑥)) |
101 | 97, 100 | oveq12d 5906 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥))) |
102 | 99, 101 | eqeq12d 2202 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ((𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ↔ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)))) |
103 | | simp3 1000 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → 𝑝 = ⨣ ) |
104 | 103 | oveqd 5905 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → (𝑞𝑝𝑟) = (𝑞 ⨣ 𝑟)) |
105 | 104 | oveq1d 5903 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞 ⨣ 𝑟)𝑠𝑤)) |
106 | 96 | oveqd 5905 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ((𝑞 ⨣ 𝑟)𝑠𝑤) = ((𝑞 ⨣ 𝑟) · 𝑤)) |
107 | 105, 106 | eqtrd 2220 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞 ⨣ 𝑟) · 𝑤)) |
108 | 96 | oveqd 5905 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → (𝑞𝑠𝑤) = (𝑞 · 𝑤)) |
109 | 108, 97 | oveq12d 5906 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ((𝑞𝑠𝑤) + (𝑟𝑠𝑤)) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) |
110 | 107, 109 | eqeq12d 2202 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → (((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤)) ↔ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤)))) |
111 | 98, 102, 110 | 3anbi123d 1322 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ↔ ((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))))) |
112 | 96 | oveqd 5905 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ((𝑞 × 𝑟)𝑠𝑤) = ((𝑞 × 𝑟) · 𝑤)) |
113 | 97 | oveq2d 5904 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → (𝑞𝑠(𝑟𝑠𝑤)) = (𝑞𝑠(𝑟 · 𝑤))) |
114 | 96 | oveqd 5905 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → (𝑞𝑠(𝑟 · 𝑤)) = (𝑞 · (𝑟 · 𝑤))) |
115 | 113, 114 | eqtrd 2220 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → (𝑞𝑠(𝑟𝑠𝑤)) = (𝑞 · (𝑟 · 𝑤))) |
116 | 112, 115 | eqeq12d 2202 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ↔ ((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)))) |
117 | 96 | oveqd 5905 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 1 𝑠𝑤) = ( 1 · 𝑤)) |
118 | 117 | eqeq1d 2196 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → (( 1 𝑠𝑤) = 𝑤 ↔ ( 1 · 𝑤) = 𝑤)) |
119 | 116, 118 | anbi12d 473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ((((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤) ↔ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))) |
120 | 111, 119 | anbi12d 473 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ((((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)) ↔ (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))) |
121 | 120 | 2ralbidv 2511 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) →
(∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)) ↔ ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))) |
122 | 95, 121 | raleqbidv 2695 |
. . . . . . . . . . . . 13
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) →
(∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)) ↔ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))) |
123 | 95, 122 | raleqbidv 2695 |
. . . . . . . . . . . 12
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) →
(∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)) ↔ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))) |
124 | 123 | anbi2d 464 |
. . . . . . . . . . 11
⊢ ((𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ((𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))) |
125 | 124 | 3expa 1204 |
. . . . . . . . . 10
⊢ (((𝑠 = · ∧ 𝑘 = 𝐾) ∧ 𝑝 = ⨣ ) → ((𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))) |
126 | 125 | adantll 476 |
. . . . . . . . 9
⊢ (((𝑊 ∈ V ∧ (𝑠 = · ∧ 𝑘 = 𝐾)) ∧ 𝑝 = ⨣ ) → ((𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))) |
127 | 94, 126 | sbcied 3011 |
. . . . . . . 8
⊢ ((𝑊 ∈ V ∧ (𝑠 = · ∧ 𝑘 = 𝐾)) → ([ ⨣ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))) |
128 | 127 | anassrs 400 |
. . . . . . 7
⊢ (((𝑊 ∈ V ∧ 𝑠 = · ) ∧ 𝑘 = 𝐾) → ([ ⨣ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))) |
129 | 90, 128 | sbcied 3011 |
. . . . . 6
⊢ ((𝑊 ∈ V ∧ 𝑠 = · ) →
([𝐾 / 𝑘][ ⨣ /
𝑝](𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))) |
130 | 85, 129 | sbcied 3011 |
. . . . 5
⊢ (𝑊 ∈ V → ([ · /
𝑠][𝐾 / 𝑘][ ⨣ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))) |
131 | 81, 130 | bitrd 188 |
. . . 4
⊢ (𝑊 ∈ V → ([𝑉 / 𝑣][ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))) |
132 | 1, 131 | syl 14 |
. . 3
⊢ (𝑊 ∈ Grp →
([𝑉 / 𝑣][ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))) |
133 | 132 | pm5.32i 454 |
. 2
⊢ ((𝑊 ∈ Grp ∧ [𝑉 / 𝑣][ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))) ↔ (𝑊 ∈ Grp ∧ (𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))) |
134 | | fveq2 5527 |
. . . . 5
⊢ (𝑔 = 𝑊 → (Base‘𝑔) = (Base‘𝑊)) |
135 | 134, 2 | eqtr4di 2238 |
. . . 4
⊢ (𝑔 = 𝑊 → (Base‘𝑔) = 𝑉) |
136 | | fveq2 5527 |
. . . . . 6
⊢ (𝑔 = 𝑊 → (+g‘𝑔) = (+g‘𝑊)) |
137 | 136, 8 | eqtr4di 2238 |
. . . . 5
⊢ (𝑔 = 𝑊 → (+g‘𝑔) = + ) |
138 | | fveq2 5527 |
. . . . . . 7
⊢ (𝑔 = 𝑊 → (Scalar‘𝑔) = (Scalar‘𝑊)) |
139 | 138, 13 | eqtr4di 2238 |
. . . . . 6
⊢ (𝑔 = 𝑊 → (Scalar‘𝑔) = 𝐹) |
140 | | fveq2 5527 |
. . . . . . . 8
⊢ (𝑔 = 𝑊 → (
·𝑠 ‘𝑔) = ( ·𝑠
‘𝑊)) |
141 | 140, 82 | eqtr4di 2238 |
. . . . . . 7
⊢ (𝑔 = 𝑊 → (
·𝑠 ‘𝑔) = · ) |
142 | 141 | sbceq1d 2979 |
. . . . . 6
⊢ (𝑔 = 𝑊 → ([(
·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ [ · / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))))) |
143 | 139, 142 | sbceqbid 2981 |
. . . . 5
⊢ (𝑔 = 𝑊 → ([(Scalar‘𝑔) / 𝑓][(
·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ [𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))))) |
144 | 137, 143 | sbceqbid 2981 |
. . . 4
⊢ (𝑔 = 𝑊 → ([(+g‘𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][(
·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ [ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))))) |
145 | 135, 144 | sbceqbid 2981 |
. . 3
⊢ (𝑔 = 𝑊 → ([(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][(
·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))) ↔ [𝑉 / 𝑣][ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))))) |
146 | | df-lmod 13535 |
. . 3
⊢ LMod =
{𝑔 ∈ Grp ∣
[(Base‘𝑔) /
𝑣][(+g‘𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][(
·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))} |
147 | 145, 146 | elrab2 2908 |
. 2
⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ [𝑉 / 𝑣][ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤))))) |
148 | | 3anass 983 |
. 2
⊢ ((𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))) ↔ (𝑊 ∈ Grp ∧ (𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))) |
149 | 133, 147,
148 | 3bitr4i 212 |
1
⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))) |