ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islmod GIF version

Theorem islmod 13787
Description: The predicate "is a left module". (Contributed by NM, 4-Nov-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
islmod.v 𝑉 = (Base‘𝑊)
islmod.a + = (+g𝑊)
islmod.s · = ( ·𝑠𝑊)
islmod.f 𝐹 = (Scalar‘𝑊)
islmod.k 𝐾 = (Base‘𝐹)
islmod.p = (+g𝐹)
islmod.t × = (.r𝐹)
islmod.u 1 = (1r𝐹)
Assertion
Ref Expression
islmod (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
Distinct variable groups:   𝑟,𝑞,𝑤,𝑥,𝐹   𝐾,𝑞,𝑟,𝑤,𝑥   ,𝑞,𝑟,𝑤,𝑥   𝑉,𝑞,𝑟,𝑤,𝑥   + ,𝑞,𝑟,𝑤,𝑥   1 ,𝑞,𝑟,𝑤,𝑥   × ,𝑞,𝑟,𝑤,𝑥   · ,𝑞,𝑟,𝑤,𝑥
Allowed substitution hints:   𝑊(𝑥,𝑤,𝑟,𝑞)

Proof of Theorem islmod
Dummy variables 𝑓 𝑎 𝑔 𝑘 𝑝 𝑠 𝑣 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . . . 4 (𝑊 ∈ Grp → 𝑊 ∈ V)
2 islmod.v . . . . . . 7 𝑉 = (Base‘𝑊)
3 basfn 12676 . . . . . . . 8 Base Fn V
4 funfvex 5571 . . . . . . . . 9 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
54funfni 5354 . . . . . . . 8 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
63, 5mpan 424 . . . . . . 7 (𝑊 ∈ V → (Base‘𝑊) ∈ V)
72, 6eqeltrid 2280 . . . . . 6 (𝑊 ∈ V → 𝑉 ∈ V)
8 islmod.a . . . . . . . . 9 + = (+g𝑊)
9 plusgslid 12730 . . . . . . . . . 10 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
109slotex 12645 . . . . . . . . 9 (𝑊 ∈ V → (+g𝑊) ∈ V)
118, 10eqeltrid 2280 . . . . . . . 8 (𝑊 ∈ V → + ∈ V)
1211adantr 276 . . . . . . 7 ((𝑊 ∈ V ∧ 𝑣 = 𝑉) → + ∈ V)
13 islmod.f . . . . . . . . . . 11 𝐹 = (Scalar‘𝑊)
14 scaslid 12770 . . . . . . . . . . . 12 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
1514slotex 12645 . . . . . . . . . . 11 (𝑊 ∈ V → (Scalar‘𝑊) ∈ V)
1613, 15eqeltrid 2280 . . . . . . . . . 10 (𝑊 ∈ V → 𝐹 ∈ V)
1716adantr 276 . . . . . . . . 9 ((𝑊 ∈ V ∧ (𝑣 = 𝑉𝑎 = + )) → 𝐹 ∈ V)
18 simplrl 535 . . . . . . . . . . . 12 (((𝑊 ∈ V ∧ (𝑣 = 𝑉𝑎 = + )) ∧ 𝑓 = 𝐹) → 𝑣 = 𝑉)
19 simplrr 536 . . . . . . . . . . . 12 (((𝑊 ∈ V ∧ (𝑣 = 𝑉𝑎 = + )) ∧ 𝑓 = 𝐹) → 𝑎 = + )
20 simpr 110 . . . . . . . . . . . 12 (((𝑊 ∈ V ∧ (𝑣 = 𝑉𝑎 = + )) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
21 simp3 1001 . . . . . . . . . . . . . 14 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → 𝑓 = 𝐹)
2221fveq2d 5558 . . . . . . . . . . . . 13 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹))
23 islmod.k . . . . . . . . . . . . 13 𝐾 = (Base‘𝐹)
2422, 23eqtr4di 2244 . . . . . . . . . . . 12 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (Base‘𝑓) = 𝐾)
2518, 19, 20, 24syl3anc 1249 . . . . . . . . . . 11 (((𝑊 ∈ V ∧ (𝑣 = 𝑉𝑎 = + )) ∧ 𝑓 = 𝐹) → (Base‘𝑓) = 𝐾)
2621fveq2d 5558 . . . . . . . . . . . . . 14 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (+g𝑓) = (+g𝐹))
27 islmod.p . . . . . . . . . . . . . 14 = (+g𝐹)
2826, 27eqtr4di 2244 . . . . . . . . . . . . 13 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (+g𝑓) = )
2918, 19, 20, 28syl3anc 1249 . . . . . . . . . . . 12 (((𝑊 ∈ V ∧ (𝑣 = 𝑉𝑎 = + )) ∧ 𝑓 = 𝐹) → (+g𝑓) = )
3021fveq2d 5558 . . . . . . . . . . . . . . . 16 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (.r𝑓) = (.r𝐹))
31 islmod.t . . . . . . . . . . . . . . . 16 × = (.r𝐹)
3230, 31eqtr4di 2244 . . . . . . . . . . . . . . 15 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (.r𝑓) = × )
3332sbceq1d 2990 . . . . . . . . . . . . . 14 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → ([(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ [ × / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))))
3418, 19, 20, 33syl3anc 1249 . . . . . . . . . . . . 13 (((𝑊 ∈ V ∧ (𝑣 = 𝑉𝑎 = + )) ∧ 𝑓 = 𝐹) → ([(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ [ × / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))))
35 simpll 527 . . . . . . . . . . . . . 14 (((𝑊 ∈ V ∧ (𝑣 = 𝑉𝑎 = + )) ∧ 𝑓 = 𝐹) → 𝑊 ∈ V)
36 mulrslid 12749 . . . . . . . . . . . . . . . . . . 19 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
3736slotex 12645 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ V → (.r𝐹) ∈ V)
3816, 37syl 14 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ V → (.r𝐹) ∈ V)
3931, 38eqeltrid 2280 . . . . . . . . . . . . . . . 16 (𝑊 ∈ V → × ∈ V)
40 oveq 5924 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = × → (𝑞𝑡𝑟) = (𝑞 × 𝑟))
4140oveq1d 5933 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = × → ((𝑞𝑡𝑟)𝑠𝑤) = ((𝑞 × 𝑟)𝑠𝑤))
4241eqeq1d 2202 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = × → (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ↔ ((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤))))
4342anbi1d 465 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = × → ((((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤) ↔ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))
4443anbi2d 464 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = × → ((((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)) ↔ (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))))
45442ralbidv 2518 . . . . . . . . . . . . . . . . . . 19 (𝑡 = × → (∀𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)) ↔ ∀𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))))
46452ralbidv 2518 . . . . . . . . . . . . . . . . . 18 (𝑡 = × → (∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)) ↔ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))))
4746anbi2d 464 . . . . . . . . . . . . . . . . 17 (𝑡 = × → ((𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ (𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))))
4847adantl 277 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ V ∧ 𝑡 = × ) → ((𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ (𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))))
4939, 48sbcied 3022 . . . . . . . . . . . . . . 15 (𝑊 ∈ V → ([ × / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ (𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))))
5021eleq1d 2262 . . . . . . . . . . . . . . . 16 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (𝑓 ∈ Ring ↔ 𝐹 ∈ Ring))
51 simp1 999 . . . . . . . . . . . . . . . . . 18 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → 𝑣 = 𝑉)
5251eleq2d 2263 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → ((𝑟𝑠𝑤) ∈ 𝑣 ↔ (𝑟𝑠𝑤) ∈ 𝑉))
53 simp2 1000 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → 𝑎 = + )
5453oveqd 5935 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (𝑤𝑎𝑥) = (𝑤 + 𝑥))
5554oveq2d 5934 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (𝑟𝑠(𝑤𝑎𝑥)) = (𝑟𝑠(𝑤 + 𝑥)))
5653oveqd 5935 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)))
5755, 56eqeq12d 2208 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → ((𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ↔ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥))))
5853oveqd 5935 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤)) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤)))
5958eqeq2d 2205 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤)) ↔ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))))
6052, 57, 593anbi123d 1323 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ↔ ((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤)))))
6121fveq2d 5558 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (1r𝑓) = (1r𝐹))
62 islmod.u . . . . . . . . . . . . . . . . . . . . . . . 24 1 = (1r𝐹)
6361, 62eqtr4di 2244 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (1r𝑓) = 1 )
6463oveq1d 5933 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → ((1r𝑓)𝑠𝑤) = ( 1 𝑠𝑤))
6564eqeq1d 2202 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (((1r𝑓)𝑠𝑤) = 𝑤 ↔ ( 1 𝑠𝑤) = 𝑤))
6665anbi2d 464 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → ((((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤) ↔ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))
6760, 66anbi12d 473 . . . . . . . . . . . . . . . . . . 19 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → ((((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)) ↔ (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))))
6851, 67raleqbidv 2706 . . . . . . . . . . . . . . . . . 18 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (∀𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)) ↔ ∀𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))))
6951, 68raleqbidv 2706 . . . . . . . . . . . . . . . . 17 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (∀𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)) ↔ ∀𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))))
70692ralbidv 2518 . . . . . . . . . . . . . . . 16 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → (∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)) ↔ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))))
7150, 70anbi12d 473 . . . . . . . . . . . . . . 15 ((𝑣 = 𝑉𝑎 = +𝑓 = 𝐹) → ((𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))))
7249, 71sylan9bb 462 . . . . . . . . . . . . . 14 ((𝑊 ∈ V ∧ (𝑣 = 𝑉𝑎 = +𝑓 = 𝐹)) → ([ × / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))))
7335, 18, 19, 20, 72syl13anc 1251 . . . . . . . . . . . . 13 (((𝑊 ∈ V ∧ (𝑣 = 𝑉𝑎 = + )) ∧ 𝑓 = 𝐹) → ([ × / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))))
7434, 73bitrd 188 . . . . . . . . . . . 12 (((𝑊 ∈ V ∧ (𝑣 = 𝑉𝑎 = + )) ∧ 𝑓 = 𝐹) → ([(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))))
7529, 74sbceqbid 2992 . . . . . . . . . . 11 (((𝑊 ∈ V ∧ (𝑣 = 𝑉𝑎 = + )) ∧ 𝑓 = 𝐹) → ([(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ [ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))))
7625, 75sbceqbid 2992 . . . . . . . . . 10 (((𝑊 ∈ V ∧ (𝑣 = 𝑉𝑎 = + )) ∧ 𝑓 = 𝐹) → ([(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ [𝐾 / 𝑘][ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))))
7776sbcbidv 3044 . . . . . . . . 9 (((𝑊 ∈ V ∧ (𝑣 = 𝑉𝑎 = + )) ∧ 𝑓 = 𝐹) → ([ · / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ [ · / 𝑠][𝐾 / 𝑘][ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))))
7817, 77sbcied 3022 . . . . . . . 8 ((𝑊 ∈ V ∧ (𝑣 = 𝑉𝑎 = + )) → ([𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ [ · / 𝑠][𝐾 / 𝑘][ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))))
7978anassrs 400 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑣 = 𝑉) ∧ 𝑎 = + ) → ([𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ [ · / 𝑠][𝐾 / 𝑘][ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))))
8012, 79sbcied 3022 . . . . . 6 ((𝑊 ∈ V ∧ 𝑣 = 𝑉) → ([ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ [ · / 𝑠][𝐾 / 𝑘][ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))))
817, 80sbcied 3022 . . . . 5 (𝑊 ∈ V → ([𝑉 / 𝑣][ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ [ · / 𝑠][𝐾 / 𝑘][ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)))))
82 islmod.s . . . . . . 7 · = ( ·𝑠𝑊)
83 vscaslid 12780 . . . . . . . 8 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
8483slotex 12645 . . . . . . 7 (𝑊 ∈ V → ( ·𝑠𝑊) ∈ V)
8582, 84eqeltrid 2280 . . . . . 6 (𝑊 ∈ V → · ∈ V)
86 funfvex 5571 . . . . . . . . . . 11 ((Fun Base ∧ 𝐹 ∈ dom Base) → (Base‘𝐹) ∈ V)
8786funfni 5354 . . . . . . . . . 10 ((Base Fn V ∧ 𝐹 ∈ V) → (Base‘𝐹) ∈ V)
883, 16, 87sylancr 414 . . . . . . . . 9 (𝑊 ∈ V → (Base‘𝐹) ∈ V)
8923, 88eqeltrid 2280 . . . . . . . 8 (𝑊 ∈ V → 𝐾 ∈ V)
9089adantr 276 . . . . . . 7 ((𝑊 ∈ V ∧ 𝑠 = · ) → 𝐾 ∈ V)
919slotex 12645 . . . . . . . . . . . 12 (𝐹 ∈ V → (+g𝐹) ∈ V)
9216, 91syl 14 . . . . . . . . . . 11 (𝑊 ∈ V → (+g𝐹) ∈ V)
9327, 92eqeltrid 2280 . . . . . . . . . 10 (𝑊 ∈ V → ∈ V)
9493adantr 276 . . . . . . . . 9 ((𝑊 ∈ V ∧ (𝑠 = ·𝑘 = 𝐾)) → ∈ V)
95 simp2 1000 . . . . . . . . . . . . 13 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → 𝑘 = 𝐾)
96 simp1 999 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → 𝑠 = · )
9796oveqd 5935 . . . . . . . . . . . . . . . . . 18 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → (𝑟𝑠𝑤) = (𝑟 · 𝑤))
9897eleq1d 2262 . . . . . . . . . . . . . . . . 17 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → ((𝑟𝑠𝑤) ∈ 𝑉 ↔ (𝑟 · 𝑤) ∈ 𝑉))
9996oveqd 5935 . . . . . . . . . . . . . . . . . 18 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → (𝑟𝑠(𝑤 + 𝑥)) = (𝑟 · (𝑤 + 𝑥)))
10096oveqd 5935 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → (𝑟𝑠𝑥) = (𝑟 · 𝑥))
10197, 100oveq12d 5936 . . . . . . . . . . . . . . . . . 18 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)))
10299, 101eqeq12d 2208 . . . . . . . . . . . . . . . . 17 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → ((𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ↔ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥))))
103 simp3 1001 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → 𝑝 = )
104103oveqd 5935 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → (𝑞𝑝𝑟) = (𝑞 𝑟))
105104oveq1d 5933 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞 𝑟)𝑠𝑤))
10696oveqd 5935 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → ((𝑞 𝑟)𝑠𝑤) = ((𝑞 𝑟) · 𝑤))
107105, 106eqtrd 2226 . . . . . . . . . . . . . . . . . 18 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞 𝑟) · 𝑤))
10896oveqd 5935 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → (𝑞𝑠𝑤) = (𝑞 · 𝑤))
109108, 97oveq12d 5936 . . . . . . . . . . . . . . . . . 18 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → ((𝑞𝑠𝑤) + (𝑟𝑠𝑤)) = ((𝑞 · 𝑤) + (𝑟 · 𝑤)))
110107, 109eqeq12d 2208 . . . . . . . . . . . . . . . . 17 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → (((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤)) ↔ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))))
11198, 102, 1103anbi123d 1323 . . . . . . . . . . . . . . . 16 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ↔ ((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤)))))
11296oveqd 5935 . . . . . . . . . . . . . . . . . 18 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → ((𝑞 × 𝑟)𝑠𝑤) = ((𝑞 × 𝑟) · 𝑤))
11397oveq2d 5934 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → (𝑞𝑠(𝑟𝑠𝑤)) = (𝑞𝑠(𝑟 · 𝑤)))
11496oveqd 5935 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → (𝑞𝑠(𝑟 · 𝑤)) = (𝑞 · (𝑟 · 𝑤)))
115113, 114eqtrd 2226 . . . . . . . . . . . . . . . . . 18 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → (𝑞𝑠(𝑟𝑠𝑤)) = (𝑞 · (𝑟 · 𝑤)))
116112, 115eqeq12d 2208 . . . . . . . . . . . . . . . . 17 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ↔ ((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤))))
11796oveqd 5935 . . . . . . . . . . . . . . . . . 18 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → ( 1 𝑠𝑤) = ( 1 · 𝑤))
118117eqeq1d 2202 . . . . . . . . . . . . . . . . 17 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → (( 1 𝑠𝑤) = 𝑤 ↔ ( 1 · 𝑤) = 𝑤))
119116, 118anbi12d 473 . . . . . . . . . . . . . . . 16 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → ((((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤) ↔ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))
120111, 119anbi12d 473 . . . . . . . . . . . . . . 15 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → ((((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)) ↔ (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
1211202ralbidv 2518 . . . . . . . . . . . . . 14 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → (∀𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)) ↔ ∀𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
12295, 121raleqbidv 2706 . . . . . . . . . . . . 13 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → (∀𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)) ↔ ∀𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
12395, 122raleqbidv 2706 . . . . . . . . . . . 12 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → (∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤)) ↔ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
124123anbi2d 464 . . . . . . . . . . 11 ((𝑠 = ·𝑘 = 𝐾𝑝 = ) → ((𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))))
1251243expa 1205 . . . . . . . . . 10 (((𝑠 = ·𝑘 = 𝐾) ∧ 𝑝 = ) → ((𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))))
126125adantll 476 . . . . . . . . 9 (((𝑊 ∈ V ∧ (𝑠 = ·𝑘 = 𝐾)) ∧ 𝑝 = ) → ((𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))))
12794, 126sbcied 3022 . . . . . . . 8 ((𝑊 ∈ V ∧ (𝑠 = ·𝑘 = 𝐾)) → ([ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))))
128127anassrs 400 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑠 = · ) ∧ 𝑘 = 𝐾) → ([ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))))
12990, 128sbcied 3022 . . . . . 6 ((𝑊 ∈ V ∧ 𝑠 = · ) → ([𝐾 / 𝑘][ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))))
13085, 129sbcied 3022 . . . . 5 (𝑊 ∈ V → ([ · / 𝑠][𝐾 / 𝑘][ / 𝑝](𝐹 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑉𝑤𝑉 (((𝑟𝑠𝑤) ∈ 𝑉 ∧ (𝑟𝑠(𝑤 + 𝑥)) = ((𝑟𝑠𝑤) + (𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤) + (𝑟𝑠𝑤))) ∧ (((𝑞 × 𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ( 1 𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))))
13181, 130bitrd 188 . . . 4 (𝑊 ∈ V → ([𝑉 / 𝑣][ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))))
1321, 131syl 14 . . 3 (𝑊 ∈ Grp → ([𝑉 / 𝑣][ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ (𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))))
133132pm5.32i 454 . 2 ((𝑊 ∈ Grp ∧ [𝑉 / 𝑣][ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))) ↔ (𝑊 ∈ Grp ∧ (𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))))
134 fveq2 5554 . . . . 5 (𝑔 = 𝑊 → (Base‘𝑔) = (Base‘𝑊))
135134, 2eqtr4di 2244 . . . 4 (𝑔 = 𝑊 → (Base‘𝑔) = 𝑉)
136 fveq2 5554 . . . . . 6 (𝑔 = 𝑊 → (+g𝑔) = (+g𝑊))
137136, 8eqtr4di 2244 . . . . 5 (𝑔 = 𝑊 → (+g𝑔) = + )
138 fveq2 5554 . . . . . . 7 (𝑔 = 𝑊 → (Scalar‘𝑔) = (Scalar‘𝑊))
139138, 13eqtr4di 2244 . . . . . 6 (𝑔 = 𝑊 → (Scalar‘𝑔) = 𝐹)
140 fveq2 5554 . . . . . . . 8 (𝑔 = 𝑊 → ( ·𝑠𝑔) = ( ·𝑠𝑊))
141140, 82eqtr4di 2244 . . . . . . 7 (𝑔 = 𝑊 → ( ·𝑠𝑔) = · )
142141sbceq1d 2990 . . . . . 6 (𝑔 = 𝑊 → ([( ·𝑠𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ [ · / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))))
143139, 142sbceqbid 2992 . . . . 5 (𝑔 = 𝑊 → ([(Scalar‘𝑔) / 𝑓][( ·𝑠𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ [𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))))
144137, 143sbceqbid 2992 . . . 4 (𝑔 = 𝑊 → ([(+g𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][( ·𝑠𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ [ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))))
145135, 144sbceqbid 2992 . . 3 (𝑔 = 𝑊 → ([(Base‘𝑔) / 𝑣][(+g𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][( ·𝑠𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤))) ↔ [𝑉 / 𝑣][ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))))
146 df-lmod 13785 . . 3 LMod = {𝑔 ∈ Grp ∣ [(Base‘𝑔) / 𝑣][(+g𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][( ·𝑠𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))}
147145, 146elrab2 2919 . 2 (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ [𝑉 / 𝑣][ + / 𝑎][𝐹 / 𝑓][ · / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))))
148 3anass 984 . 2 ((𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))) ↔ (𝑊 ∈ Grp ∧ (𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))))
149133, 147, 1483bitr4i 212 1 (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  [wsbc 2985   Fn wfn 5249  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  .rcmulr 12696  Scalarcsca 12698   ·𝑠 cvsca 12699  Grpcgrp 13072  1rcur 13455  Ringcrg 13492  LModclmod 13783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-lmod 13785
This theorem is referenced by:  lmodlema  13788  islmodd  13789  lmodgrp  13790  lmodring  13791  lmodprop2d  13844
  Copyright terms: Public domain W3C validator