ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-scaf Unicode version

Definition df-scaf 13789
Description: Define the functionalization of the  .s operator. This restricts the value of  .s to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf  |-  .sf 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
Distinct variable group:    x, g, y

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 13787 . 2  class  .sf
2 vg . . 3  setvar  g
3 cvv 2760 . . 3  class  _V
4 vx . . . 4  setvar  x
5 vy . . . 4  setvar  y
62cv 1363 . . . . . 6  class  g
7 csca 12701 . . . . . 6  class Scalar
86, 7cfv 5255 . . . . 5  class  (Scalar `  g )
9 cbs 12621 . . . . 5  class  Base
108, 9cfv 5255 . . . 4  class  ( Base `  (Scalar `  g )
)
116, 9cfv 5255 . . . 4  class  ( Base `  g )
124cv 1363 . . . . 5  class  x
135cv 1363 . . . . 5  class  y
14 cvsca 12702 . . . . . 6  class  .s
156, 14cfv 5255 . . . . 5  class  ( .s
`  g )
1612, 13, 15co 5919 . . . 4  class  ( x ( .s `  g
) y )
174, 5, 10, 11, 16cmpo 5921 . . 3  class  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) )
182, 3, 17cmpt 4091 . 2  class  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
191, 18wceq 1364 1  wff  .sf 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
Colors of variables: wff set class
This definition is referenced by:  scaffvalg  13805
  Copyright terms: Public domain W3C validator