ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-scaf Unicode version

Definition df-scaf 13631
Description: Define the functionalization of the  .s operator. This restricts the value of  .s to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf  |-  .sf 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
Distinct variable group:    x, g, y

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 13629 . 2  class  .sf
2 vg . . 3  setvar  g
3 cvv 2752 . . 3  class  _V
4 vx . . . 4  setvar  x
5 vy . . . 4  setvar  y
62cv 1363 . . . . . 6  class  g
7 csca 12603 . . . . . 6  class Scalar
86, 7cfv 5238 . . . . 5  class  (Scalar `  g )
9 cbs 12523 . . . . 5  class  Base
108, 9cfv 5238 . . . 4  class  ( Base `  (Scalar `  g )
)
116, 9cfv 5238 . . . 4  class  ( Base `  g )
124cv 1363 . . . . 5  class  x
135cv 1363 . . . . 5  class  y
14 cvsca 12604 . . . . . 6  class  .s
156, 14cfv 5238 . . . . 5  class  ( .s
`  g )
1612, 13, 15co 5900 . . . 4  class  ( x ( .s `  g
) y )
174, 5, 10, 11, 16cmpo 5902 . . 3  class  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) )
182, 3, 17cmpt 4082 . 2  class  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
191, 18wceq 1364 1  wff  .sf 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
Colors of variables: wff set class
This definition is referenced by:  scaffvalg  13647
  Copyright terms: Public domain W3C validator