ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-scaf Unicode version

Definition df-scaf 14248
Description: Define the functionalization of the  .s operator. This restricts the value of  .s to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf  |-  .sf 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
Distinct variable group:    x, g, y

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 14246 . 2  class  .sf
2 vg . . 3  setvar  g
3 cvv 2799 . . 3  class  _V
4 vx . . . 4  setvar  x
5 vy . . . 4  setvar  y
62cv 1394 . . . . . 6  class  g
7 csca 13108 . . . . . 6  class Scalar
86, 7cfv 5317 . . . . 5  class  (Scalar `  g )
9 cbs 13027 . . . . 5  class  Base
108, 9cfv 5317 . . . 4  class  ( Base `  (Scalar `  g )
)
116, 9cfv 5317 . . . 4  class  ( Base `  g )
124cv 1394 . . . . 5  class  x
135cv 1394 . . . . 5  class  y
14 cvsca 13109 . . . . . 6  class  .s
156, 14cfv 5317 . . . . 5  class  ( .s
`  g )
1612, 13, 15co 6000 . . . 4  class  ( x ( .s `  g
) y )
174, 5, 10, 11, 16cmpo 6002 . . 3  class  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) )
182, 3, 17cmpt 4144 . 2  class  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
191, 18wceq 1395 1  wff  .sf 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
Colors of variables: wff set class
This definition is referenced by:  scaffvalg  14264
  Copyright terms: Public domain W3C validator