ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-scaf Unicode version

Definition df-scaf 13385
Description: Define the functionalization of the  .s operator. This restricts the value of  .s to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf  |-  .sf 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
Distinct variable group:    x, g, y

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 13383 . 2  class  .sf
2 vg . . 3  setvar  g
3 cvv 2739 . . 3  class  _V
4 vx . . . 4  setvar  x
5 vy . . . 4  setvar  y
62cv 1352 . . . . . 6  class  g
7 csca 12541 . . . . . 6  class Scalar
86, 7cfv 5218 . . . . 5  class  (Scalar `  g )
9 cbs 12464 . . . . 5  class  Base
108, 9cfv 5218 . . . 4  class  ( Base `  (Scalar `  g )
)
116, 9cfv 5218 . . . 4  class  ( Base `  g )
124cv 1352 . . . . 5  class  x
135cv 1352 . . . . 5  class  y
14 cvsca 12542 . . . . . 6  class  .s
156, 14cfv 5218 . . . . 5  class  ( .s
`  g )
1612, 13, 15co 5877 . . . 4  class  ( x ( .s `  g
) y )
174, 5, 10, 11, 16cmpo 5879 . . 3  class  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) )
182, 3, 17cmpt 4066 . 2  class  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
191, 18wceq 1353 1  wff  .sf 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
Colors of variables: wff set class
This definition is referenced by:  scaffvalg  13401
  Copyright terms: Public domain W3C validator