ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-scaf Unicode version

Definition df-scaf 14023
Description: Define the functionalization of the  .s operator. This restricts the value of  .s to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf  |-  .sf 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
Distinct variable group:    x, g, y

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 14021 . 2  class  .sf
2 vg . . 3  setvar  g
3 cvv 2771 . . 3  class  _V
4 vx . . . 4  setvar  x
5 vy . . . 4  setvar  y
62cv 1371 . . . . . 6  class  g
7 csca 12883 . . . . . 6  class Scalar
86, 7cfv 5270 . . . . 5  class  (Scalar `  g )
9 cbs 12803 . . . . 5  class  Base
108, 9cfv 5270 . . . 4  class  ( Base `  (Scalar `  g )
)
116, 9cfv 5270 . . . 4  class  ( Base `  g )
124cv 1371 . . . . 5  class  x
135cv 1371 . . . . 5  class  y
14 cvsca 12884 . . . . . 6  class  .s
156, 14cfv 5270 . . . . 5  class  ( .s
`  g )
1612, 13, 15co 5943 . . . 4  class  ( x ( .s `  g
) y )
174, 5, 10, 11, 16cmpo 5945 . . 3  class  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) )
182, 3, 17cmpt 4104 . 2  class  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
191, 18wceq 1372 1  wff  .sf 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
Colors of variables: wff set class
This definition is referenced by:  scaffvalg  14039
  Copyright terms: Public domain W3C validator