ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-scaf Unicode version

Definition df-scaf 14167
Description: Define the functionalization of the  .s operator. This restricts the value of  .s to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf  |-  .sf 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
Distinct variable group:    x, g, y

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 14165 . 2  class  .sf
2 vg . . 3  setvar  g
3 cvv 2776 . . 3  class  _V
4 vx . . . 4  setvar  x
5 vy . . . 4  setvar  y
62cv 1372 . . . . . 6  class  g
7 csca 13027 . . . . . 6  class Scalar
86, 7cfv 5290 . . . . 5  class  (Scalar `  g )
9 cbs 12947 . . . . 5  class  Base
108, 9cfv 5290 . . . 4  class  ( Base `  (Scalar `  g )
)
116, 9cfv 5290 . . . 4  class  ( Base `  g )
124cv 1372 . . . . 5  class  x
135cv 1372 . . . . 5  class  y
14 cvsca 13028 . . . . . 6  class  .s
156, 14cfv 5290 . . . . 5  class  ( .s
`  g )
1612, 13, 15co 5967 . . . 4  class  ( x ( .s `  g
) y )
174, 5, 10, 11, 16cmpo 5969 . . 3  class  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) )
182, 3, 17cmpt 4121 . 2  class  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
191, 18wceq 1373 1  wff  .sf 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
Colors of variables: wff set class
This definition is referenced by:  scaffvalg  14183
  Copyright terms: Public domain W3C validator