ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-scaf Unicode version

Definition df-scaf 13786
Description: Define the functionalization of the  .s operator. This restricts the value of  .s to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf  |-  .sf 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
Distinct variable group:    x, g, y

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 13784 . 2  class  .sf
2 vg . . 3  setvar  g
3 cvv 2760 . . 3  class  _V
4 vx . . . 4  setvar  x
5 vy . . . 4  setvar  y
62cv 1363 . . . . . 6  class  g
7 csca 12698 . . . . . 6  class Scalar
86, 7cfv 5254 . . . . 5  class  (Scalar `  g )
9 cbs 12618 . . . . 5  class  Base
108, 9cfv 5254 . . . 4  class  ( Base `  (Scalar `  g )
)
116, 9cfv 5254 . . . 4  class  ( Base `  g )
124cv 1363 . . . . 5  class  x
135cv 1363 . . . . 5  class  y
14 cvsca 12699 . . . . . 6  class  .s
156, 14cfv 5254 . . . . 5  class  ( .s
`  g )
1612, 13, 15co 5918 . . . 4  class  ( x ( .s `  g
) y )
174, 5, 10, 11, 16cmpo 5920 . . 3  class  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) )
182, 3, 17cmpt 4090 . 2  class  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
191, 18wceq 1364 1  wff  .sf 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  g ) ) ,  y  e.  ( Base `  g )  |->  ( x ( .s `  g
) y ) ) )
Colors of variables: wff set class
This definition is referenced by:  scaffvalg  13802
  Copyright terms: Public domain W3C validator