ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffvalg GIF version

Theorem scaffvalg 13862
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scaffvalg (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥, · ,𝑦   𝑥,𝑊,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   (𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem scaffvalg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2 = ( ·sf𝑊)
2 elex 2774 . . 3 (𝑊𝑉𝑊 ∈ V)
3 df-scaf 13846 . . . 4 ·sf = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)))
4 fveq2 5558 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
5 scaffval.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
64, 5eqtr4di 2247 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
76fveq2d 5562 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
8 scaffval.k . . . . . 6 𝐾 = (Base‘𝐹)
97, 8eqtr4di 2247 . . . . 5 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
10 fveq2 5558 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
11 scaffval.b . . . . . 6 𝐵 = (Base‘𝑊)
1210, 11eqtr4di 2247 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
13 fveq2 5558 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
14 scaffval.s . . . . . . 7 · = ( ·𝑠𝑊)
1513, 14eqtr4di 2247 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
1615oveqd 5939 . . . . 5 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)𝑦) = (𝑥 · 𝑦))
179, 12, 16mpoeq123dv 5984 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
18 elex 2774 . . . 4 (𝑊 ∈ V → 𝑊 ∈ V)
19 basfn 12736 . . . . . . 7 Base Fn V
20 scaslid 12830 . . . . . . . . 9 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
2120slotex 12705 . . . . . . . 8 (𝑊 ∈ V → (Scalar‘𝑊) ∈ V)
225, 21eqeltrid 2283 . . . . . . 7 (𝑊 ∈ V → 𝐹 ∈ V)
23 funfvex 5575 . . . . . . . 8 ((Fun Base ∧ 𝐹 ∈ dom Base) → (Base‘𝐹) ∈ V)
2423funfni 5358 . . . . . . 7 ((Base Fn V ∧ 𝐹 ∈ V) → (Base‘𝐹) ∈ V)
2519, 22, 24sylancr 414 . . . . . 6 (𝑊 ∈ V → (Base‘𝐹) ∈ V)
268, 25eqeltrid 2283 . . . . 5 (𝑊 ∈ V → 𝐾 ∈ V)
27 funfvex 5575 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
2827funfni 5358 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
2919, 28mpan 424 . . . . . 6 (𝑊 ∈ V → (Base‘𝑊) ∈ V)
3011, 29eqeltrid 2283 . . . . 5 (𝑊 ∈ V → 𝐵 ∈ V)
31 mpoexga 6270 . . . . 5 ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V)
3226, 30, 31syl2anc 411 . . . 4 (𝑊 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V)
333, 17, 18, 32fvmptd3 5655 . . 3 (𝑊 ∈ V → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
342, 33syl 14 . 2 (𝑊𝑉 → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
351, 34eqtrid 2241 1 (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763   Fn wfn 5253  cfv 5258  (class class class)co 5922  cmpo 5924  Basecbs 12678  Scalarcsca 12758   ·𝑠 cvsca 12759   ·sf cscaf 13844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-ndx 12681  df-slot 12682  df-base 12684  df-sca 12771  df-scaf 13846
This theorem is referenced by:  scafvalg  13863  scafeqg  13864  scaffng  13865  lmodscaf  13866
  Copyright terms: Public domain W3C validator