ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffvalg GIF version

Theorem scaffvalg 13401
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b 𝐡 = (Baseβ€˜π‘Š)
scaffval.f 𝐹 = (Scalarβ€˜π‘Š)
scaffval.k 𝐾 = (Baseβ€˜πΉ)
scaffval.a βˆ™ = ( Β·sf β€˜π‘Š)
scaffval.s Β· = ( ·𝑠 β€˜π‘Š)
Assertion
Ref Expression
scaffvalg (π‘Š ∈ 𝑉 β†’ βˆ™ = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)))
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯,𝐾,𝑦   π‘₯, Β· ,𝑦   π‘₯,π‘Š,𝑦   π‘₯,𝑉,𝑦
Allowed substitution hints:   βˆ™ (π‘₯,𝑦)   𝐹(π‘₯,𝑦)

Proof of Theorem scaffvalg
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2 βˆ™ = ( Β·sf β€˜π‘Š)
2 elex 2750 . . 3 (π‘Š ∈ 𝑉 β†’ π‘Š ∈ V)
3 df-scaf 13385 . . . 4 Β·sf = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ (Baseβ€˜π‘€) ↦ (π‘₯( ·𝑠 β€˜π‘€)𝑦)))
4 fveq2 5517 . . . . . . . 8 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘Š))
5 scaffval.f . . . . . . . 8 𝐹 = (Scalarβ€˜π‘Š)
64, 5eqtr4di 2228 . . . . . . 7 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = 𝐹)
76fveq2d 5521 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜(Scalarβ€˜π‘€)) = (Baseβ€˜πΉ))
8 scaffval.k . . . . . 6 𝐾 = (Baseβ€˜πΉ)
97, 8eqtr4di 2228 . . . . 5 (𝑀 = π‘Š β†’ (Baseβ€˜(Scalarβ€˜π‘€)) = 𝐾)
10 fveq2 5517 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
11 scaffval.b . . . . . 6 𝐡 = (Baseβ€˜π‘Š)
1210, 11eqtr4di 2228 . . . . 5 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = 𝐡)
13 fveq2 5517 . . . . . . 7 (𝑀 = π‘Š β†’ ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘Š))
14 scaffval.s . . . . . . 7 Β· = ( ·𝑠 β€˜π‘Š)
1513, 14eqtr4di 2228 . . . . . 6 (𝑀 = π‘Š β†’ ( ·𝑠 β€˜π‘€) = Β· )
1615oveqd 5894 . . . . 5 (𝑀 = π‘Š β†’ (π‘₯( ·𝑠 β€˜π‘€)𝑦) = (π‘₯ Β· 𝑦))
179, 12, 16mpoeq123dv 5939 . . . 4 (𝑀 = π‘Š β†’ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ (Baseβ€˜π‘€) ↦ (π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)))
18 elex 2750 . . . 4 (π‘Š ∈ V β†’ π‘Š ∈ V)
19 basfn 12522 . . . . . . 7 Base Fn V
20 scaslid 12613 . . . . . . . . 9 (Scalar = Slot (Scalarβ€˜ndx) ∧ (Scalarβ€˜ndx) ∈ β„•)
2120slotex 12491 . . . . . . . 8 (π‘Š ∈ V β†’ (Scalarβ€˜π‘Š) ∈ V)
225, 21eqeltrid 2264 . . . . . . 7 (π‘Š ∈ V β†’ 𝐹 ∈ V)
23 funfvex 5534 . . . . . . . 8 ((Fun Base ∧ 𝐹 ∈ dom Base) β†’ (Baseβ€˜πΉ) ∈ V)
2423funfni 5318 . . . . . . 7 ((Base Fn V ∧ 𝐹 ∈ V) β†’ (Baseβ€˜πΉ) ∈ V)
2519, 22, 24sylancr 414 . . . . . 6 (π‘Š ∈ V β†’ (Baseβ€˜πΉ) ∈ V)
268, 25eqeltrid 2264 . . . . 5 (π‘Š ∈ V β†’ 𝐾 ∈ V)
27 funfvex 5534 . . . . . . . 8 ((Fun Base ∧ π‘Š ∈ dom Base) β†’ (Baseβ€˜π‘Š) ∈ V)
2827funfni 5318 . . . . . . 7 ((Base Fn V ∧ π‘Š ∈ V) β†’ (Baseβ€˜π‘Š) ∈ V)
2919, 28mpan 424 . . . . . 6 (π‘Š ∈ V β†’ (Baseβ€˜π‘Š) ∈ V)
3011, 29eqeltrid 2264 . . . . 5 (π‘Š ∈ V β†’ 𝐡 ∈ V)
31 mpoexga 6215 . . . . 5 ((𝐾 ∈ V ∧ 𝐡 ∈ V) β†’ (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)) ∈ V)
3226, 30, 31syl2anc 411 . . . 4 (π‘Š ∈ V β†’ (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)) ∈ V)
333, 17, 18, 32fvmptd3 5611 . . 3 (π‘Š ∈ V β†’ ( Β·sf β€˜π‘Š) = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)))
342, 33syl 14 . 2 (π‘Š ∈ 𝑉 β†’ ( Β·sf β€˜π‘Š) = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)))
351, 34eqtrid 2222 1 (π‘Š ∈ 𝑉 β†’ βˆ™ = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   = wceq 1353   ∈ wcel 2148  Vcvv 2739   Fn wfn 5213  β€˜cfv 5218  (class class class)co 5877   ∈ cmpo 5879  Basecbs 12464  Scalarcsca 12541   ·𝑠 cvsca 12542   Β·sf cscaf 13383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-ndx 12467  df-slot 12468  df-base 12470  df-sca 12554  df-scaf 13385
This theorem is referenced by:  scafvalg  13402  scafeqg  13403  scaffng  13404  lmodscaf  13405
  Copyright terms: Public domain W3C validator