ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffvalg GIF version

Theorem scaffvalg 14278
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scaffvalg (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥, · ,𝑦   𝑥,𝑊,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   (𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem scaffvalg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2 = ( ·sf𝑊)
2 elex 2811 . . 3 (𝑊𝑉𝑊 ∈ V)
3 df-scaf 14262 . . . 4 ·sf = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)))
4 fveq2 5629 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
5 scaffval.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
64, 5eqtr4di 2280 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
76fveq2d 5633 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
8 scaffval.k . . . . . 6 𝐾 = (Base‘𝐹)
97, 8eqtr4di 2280 . . . . 5 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
10 fveq2 5629 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
11 scaffval.b . . . . . 6 𝐵 = (Base‘𝑊)
1210, 11eqtr4di 2280 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
13 fveq2 5629 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
14 scaffval.s . . . . . . 7 · = ( ·𝑠𝑊)
1513, 14eqtr4di 2280 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
1615oveqd 6024 . . . . 5 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)𝑦) = (𝑥 · 𝑦))
179, 12, 16mpoeq123dv 6072 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
18 elex 2811 . . . 4 (𝑊 ∈ V → 𝑊 ∈ V)
19 basfn 13099 . . . . . . 7 Base Fn V
20 scaslid 13194 . . . . . . . . 9 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
2120slotex 13067 . . . . . . . 8 (𝑊 ∈ V → (Scalar‘𝑊) ∈ V)
225, 21eqeltrid 2316 . . . . . . 7 (𝑊 ∈ V → 𝐹 ∈ V)
23 funfvex 5646 . . . . . . . 8 ((Fun Base ∧ 𝐹 ∈ dom Base) → (Base‘𝐹) ∈ V)
2423funfni 5423 . . . . . . 7 ((Base Fn V ∧ 𝐹 ∈ V) → (Base‘𝐹) ∈ V)
2519, 22, 24sylancr 414 . . . . . 6 (𝑊 ∈ V → (Base‘𝐹) ∈ V)
268, 25eqeltrid 2316 . . . . 5 (𝑊 ∈ V → 𝐾 ∈ V)
27 funfvex 5646 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
2827funfni 5423 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
2919, 28mpan 424 . . . . . 6 (𝑊 ∈ V → (Base‘𝑊) ∈ V)
3011, 29eqeltrid 2316 . . . . 5 (𝑊 ∈ V → 𝐵 ∈ V)
31 mpoexga 6364 . . . . 5 ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V)
3226, 30, 31syl2anc 411 . . . 4 (𝑊 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V)
333, 17, 18, 32fvmptd3 5730 . . 3 (𝑊 ∈ V → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
342, 33syl 14 . 2 (𝑊𝑉 → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
351, 34eqtrid 2274 1 (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799   Fn wfn 5313  cfv 5318  (class class class)co 6007  cmpo 6009  Basecbs 13040  Scalarcsca 13121   ·𝑠 cvsca 13122   ·sf cscaf 14260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-ndx 13043  df-slot 13044  df-base 13046  df-sca 13134  df-scaf 14262
This theorem is referenced by:  scafvalg  14279  scafeqg  14280  scaffng  14281  lmodscaf  14282
  Copyright terms: Public domain W3C validator