ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffvalg GIF version

Theorem scaffvalg 14112
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scaffvalg (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥, · ,𝑦   𝑥,𝑊,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   (𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem scaffvalg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2 = ( ·sf𝑊)
2 elex 2784 . . 3 (𝑊𝑉𝑊 ∈ V)
3 df-scaf 14096 . . . 4 ·sf = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)))
4 fveq2 5583 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
5 scaffval.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
64, 5eqtr4di 2257 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
76fveq2d 5587 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
8 scaffval.k . . . . . 6 𝐾 = (Base‘𝐹)
97, 8eqtr4di 2257 . . . . 5 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
10 fveq2 5583 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
11 scaffval.b . . . . . 6 𝐵 = (Base‘𝑊)
1210, 11eqtr4di 2257 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
13 fveq2 5583 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
14 scaffval.s . . . . . . 7 · = ( ·𝑠𝑊)
1513, 14eqtr4di 2257 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
1615oveqd 5968 . . . . 5 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)𝑦) = (𝑥 · 𝑦))
179, 12, 16mpoeq123dv 6014 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
18 elex 2784 . . . 4 (𝑊 ∈ V → 𝑊 ∈ V)
19 basfn 12934 . . . . . . 7 Base Fn V
20 scaslid 13029 . . . . . . . . 9 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
2120slotex 12903 . . . . . . . 8 (𝑊 ∈ V → (Scalar‘𝑊) ∈ V)
225, 21eqeltrid 2293 . . . . . . 7 (𝑊 ∈ V → 𝐹 ∈ V)
23 funfvex 5600 . . . . . . . 8 ((Fun Base ∧ 𝐹 ∈ dom Base) → (Base‘𝐹) ∈ V)
2423funfni 5381 . . . . . . 7 ((Base Fn V ∧ 𝐹 ∈ V) → (Base‘𝐹) ∈ V)
2519, 22, 24sylancr 414 . . . . . 6 (𝑊 ∈ V → (Base‘𝐹) ∈ V)
268, 25eqeltrid 2293 . . . . 5 (𝑊 ∈ V → 𝐾 ∈ V)
27 funfvex 5600 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
2827funfni 5381 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
2919, 28mpan 424 . . . . . 6 (𝑊 ∈ V → (Base‘𝑊) ∈ V)
3011, 29eqeltrid 2293 . . . . 5 (𝑊 ∈ V → 𝐵 ∈ V)
31 mpoexga 6305 . . . . 5 ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V)
3226, 30, 31syl2anc 411 . . . 4 (𝑊 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V)
333, 17, 18, 32fvmptd3 5680 . . 3 (𝑊 ∈ V → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
342, 33syl 14 . 2 (𝑊𝑉 → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
351, 34eqtrid 2251 1 (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  Vcvv 2773   Fn wfn 5271  cfv 5276  (class class class)co 5951  cmpo 5953  Basecbs 12876  Scalarcsca 12956   ·𝑠 cvsca 12957   ·sf cscaf 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-ndx 12879  df-slot 12880  df-base 12882  df-sca 12969  df-scaf 14096
This theorem is referenced by:  scafvalg  14113  scafeqg  14114  scaffng  14115  lmodscaf  14116
  Copyright terms: Public domain W3C validator