Step | Hyp | Ref
| Expression |
1 | | scaffval.a |
. 2
β’ β = (
Β·sf βπ) |
2 | | elex 2750 |
. . 3
β’ (π β π β π β V) |
3 | | df-scaf 13385 |
. . . 4
β’
Β·sf = (π€ β V β¦ (π₯ β (Baseβ(Scalarβπ€)), π¦ β (Baseβπ€) β¦ (π₯( Β·π
βπ€)π¦))) |
4 | | fveq2 5517 |
. . . . . . . 8
β’ (π€ = π β (Scalarβπ€) = (Scalarβπ)) |
5 | | scaffval.f |
. . . . . . . 8
β’ πΉ = (Scalarβπ) |
6 | 4, 5 | eqtr4di 2228 |
. . . . . . 7
β’ (π€ = π β (Scalarβπ€) = πΉ) |
7 | 6 | fveq2d 5521 |
. . . . . 6
β’ (π€ = π β (Baseβ(Scalarβπ€)) = (BaseβπΉ)) |
8 | | scaffval.k |
. . . . . 6
β’ πΎ = (BaseβπΉ) |
9 | 7, 8 | eqtr4di 2228 |
. . . . 5
β’ (π€ = π β (Baseβ(Scalarβπ€)) = πΎ) |
10 | | fveq2 5517 |
. . . . . 6
β’ (π€ = π β (Baseβπ€) = (Baseβπ)) |
11 | | scaffval.b |
. . . . . 6
β’ π΅ = (Baseβπ) |
12 | 10, 11 | eqtr4di 2228 |
. . . . 5
β’ (π€ = π β (Baseβπ€) = π΅) |
13 | | fveq2 5517 |
. . . . . . 7
β’ (π€ = π β (
Β·π βπ€) = ( Β·π
βπ)) |
14 | | scaffval.s |
. . . . . . 7
β’ Β· = (
Β·π βπ) |
15 | 13, 14 | eqtr4di 2228 |
. . . . . 6
β’ (π€ = π β (
Β·π βπ€) = Β· ) |
16 | 15 | oveqd 5894 |
. . . . 5
β’ (π€ = π β (π₯( Β·π
βπ€)π¦) = (π₯ Β· π¦)) |
17 | 9, 12, 16 | mpoeq123dv 5939 |
. . . 4
β’ (π€ = π β (π₯ β (Baseβ(Scalarβπ€)), π¦ β (Baseβπ€) β¦ (π₯( Β·π
βπ€)π¦)) = (π₯ β πΎ, π¦ β π΅ β¦ (π₯ Β· π¦))) |
18 | | elex 2750 |
. . . 4
β’ (π β V β π β V) |
19 | | basfn 12522 |
. . . . . . 7
β’ Base Fn
V |
20 | | scaslid 12613 |
. . . . . . . . 9
β’ (Scalar =
Slot (Scalarβndx) β§ (Scalarβndx) β
β) |
21 | 20 | slotex 12491 |
. . . . . . . 8
β’ (π β V β
(Scalarβπ) β
V) |
22 | 5, 21 | eqeltrid 2264 |
. . . . . . 7
β’ (π β V β πΉ β V) |
23 | | funfvex 5534 |
. . . . . . . 8
β’ ((Fun
Base β§ πΉ β dom
Base) β (BaseβπΉ)
β V) |
24 | 23 | funfni 5318 |
. . . . . . 7
β’ ((Base Fn
V β§ πΉ β V) β
(BaseβπΉ) β
V) |
25 | 19, 22, 24 | sylancr 414 |
. . . . . 6
β’ (π β V β
(BaseβπΉ) β
V) |
26 | 8, 25 | eqeltrid 2264 |
. . . . 5
β’ (π β V β πΎ β V) |
27 | | funfvex 5534 |
. . . . . . . 8
β’ ((Fun
Base β§ π β dom
Base) β (Baseβπ)
β V) |
28 | 27 | funfni 5318 |
. . . . . . 7
β’ ((Base Fn
V β§ π β V) β
(Baseβπ) β
V) |
29 | 19, 28 | mpan 424 |
. . . . . 6
β’ (π β V β
(Baseβπ) β
V) |
30 | 11, 29 | eqeltrid 2264 |
. . . . 5
β’ (π β V β π΅ β V) |
31 | | mpoexga 6215 |
. . . . 5
β’ ((πΎ β V β§ π΅ β V) β (π₯ β πΎ, π¦ β π΅ β¦ (π₯ Β· π¦)) β V) |
32 | 26, 30, 31 | syl2anc 411 |
. . . 4
β’ (π β V β (π₯ β πΎ, π¦ β π΅ β¦ (π₯ Β· π¦)) β V) |
33 | 3, 17, 18, 32 | fvmptd3 5611 |
. . 3
β’ (π β V β (
Β·sf βπ) = (π₯ β πΎ, π¦ β π΅ β¦ (π₯ Β· π¦))) |
34 | 2, 33 | syl 14 |
. 2
β’ (π β π β (
Β·sf βπ) = (π₯ β πΎ, π¦ β π΅ β¦ (π₯ Β· π¦))) |
35 | 1, 34 | eqtrid 2222 |
1
β’ (π β π β β = (π₯ β πΎ, π¦ β π΅ β¦ (π₯ Β· π¦))) |