| Step | Hyp | Ref
| Expression |
| 1 | | scaffval.a |
. 2
⊢ ∙ = (
·sf ‘𝑊) |
| 2 | | elex 2774 |
. . 3
⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) |
| 3 | | df-scaf 13846 |
. . . 4
⊢
·sf = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠
‘𝑤)𝑦))) |
| 4 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) |
| 5 | | scaffval.f |
. . . . . . . 8
⊢ 𝐹 = (Scalar‘𝑊) |
| 6 | 4, 5 | eqtr4di 2247 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
| 7 | 6 | fveq2d 5562 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹)) |
| 8 | | scaffval.k |
. . . . . 6
⊢ 𝐾 = (Base‘𝐹) |
| 9 | 7, 8 | eqtr4di 2247 |
. . . . 5
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾) |
| 10 | | fveq2 5558 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
| 11 | | scaffval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑊) |
| 12 | 10, 11 | eqtr4di 2247 |
. . . . 5
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
| 13 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝑊)) |
| 14 | | scaffval.s |
. . . . . . 7
⊢ · = (
·𝑠 ‘𝑊) |
| 15 | 13, 14 | eqtr4di 2247 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = · ) |
| 16 | 15 | oveqd 5939 |
. . . . 5
⊢ (𝑤 = 𝑊 → (𝑥( ·𝑠
‘𝑤)𝑦) = (𝑥 · 𝑦)) |
| 17 | 9, 12, 16 | mpoeq123dv 5984 |
. . . 4
⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠
‘𝑤)𝑦)) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |
| 18 | | elex 2774 |
. . . 4
⊢ (𝑊 ∈ V → 𝑊 ∈ V) |
| 19 | | basfn 12736 |
. . . . . . 7
⊢ Base Fn
V |
| 20 | | scaslid 12830 |
. . . . . . . . 9
⊢ (Scalar =
Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈
ℕ) |
| 21 | 20 | slotex 12705 |
. . . . . . . 8
⊢ (𝑊 ∈ V →
(Scalar‘𝑊) ∈
V) |
| 22 | 5, 21 | eqeltrid 2283 |
. . . . . . 7
⊢ (𝑊 ∈ V → 𝐹 ∈ V) |
| 23 | | funfvex 5575 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝐹 ∈ dom
Base) → (Base‘𝐹)
∈ V) |
| 24 | 23 | funfni 5358 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝐹 ∈ V) →
(Base‘𝐹) ∈
V) |
| 25 | 19, 22, 24 | sylancr 414 |
. . . . . 6
⊢ (𝑊 ∈ V →
(Base‘𝐹) ∈
V) |
| 26 | 8, 25 | eqeltrid 2283 |
. . . . 5
⊢ (𝑊 ∈ V → 𝐾 ∈ V) |
| 27 | | funfvex 5575 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑊 ∈ dom
Base) → (Base‘𝑊)
∈ V) |
| 28 | 27 | funfni 5358 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑊 ∈ V) →
(Base‘𝑊) ∈
V) |
| 29 | 19, 28 | mpan 424 |
. . . . . 6
⊢ (𝑊 ∈ V →
(Base‘𝑊) ∈
V) |
| 30 | 11, 29 | eqeltrid 2283 |
. . . . 5
⊢ (𝑊 ∈ V → 𝐵 ∈ V) |
| 31 | | mpoexga 6270 |
. . . . 5
⊢ ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦)) ∈ V) |
| 32 | 26, 30, 31 | syl2anc 411 |
. . . 4
⊢ (𝑊 ∈ V → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦)) ∈ V) |
| 33 | 3, 17, 18, 32 | fvmptd3 5655 |
. . 3
⊢ (𝑊 ∈ V → (
·sf ‘𝑊) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |
| 34 | 2, 33 | syl 14 |
. 2
⊢ (𝑊 ∈ 𝑉 → (
·sf ‘𝑊) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |
| 35 | 1, 34 | eqtrid 2241 |
1
⊢ (𝑊 ∈ 𝑉 → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |