ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffvalg GIF version

Theorem scaffvalg 13582
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scaffvalg (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥, · ,𝑦   𝑥,𝑊,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   (𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem scaffvalg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2 = ( ·sf𝑊)
2 elex 2762 . . 3 (𝑊𝑉𝑊 ∈ V)
3 df-scaf 13566 . . . 4 ·sf = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)))
4 fveq2 5529 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
5 scaffval.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
64, 5eqtr4di 2239 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
76fveq2d 5533 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
8 scaffval.k . . . . . 6 𝐾 = (Base‘𝐹)
97, 8eqtr4di 2239 . . . . 5 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
10 fveq2 5529 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
11 scaffval.b . . . . . 6 𝐵 = (Base‘𝑊)
1210, 11eqtr4di 2239 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
13 fveq2 5529 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
14 scaffval.s . . . . . . 7 · = ( ·𝑠𝑊)
1513, 14eqtr4di 2239 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
1615oveqd 5907 . . . . 5 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)𝑦) = (𝑥 · 𝑦))
179, 12, 16mpoeq123dv 5952 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
18 elex 2762 . . . 4 (𝑊 ∈ V → 𝑊 ∈ V)
19 basfn 12537 . . . . . . 7 Base Fn V
20 scaslid 12629 . . . . . . . . 9 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
2120slotex 12506 . . . . . . . 8 (𝑊 ∈ V → (Scalar‘𝑊) ∈ V)
225, 21eqeltrid 2275 . . . . . . 7 (𝑊 ∈ V → 𝐹 ∈ V)
23 funfvex 5546 . . . . . . . 8 ((Fun Base ∧ 𝐹 ∈ dom Base) → (Base‘𝐹) ∈ V)
2423funfni 5330 . . . . . . 7 ((Base Fn V ∧ 𝐹 ∈ V) → (Base‘𝐹) ∈ V)
2519, 22, 24sylancr 414 . . . . . 6 (𝑊 ∈ V → (Base‘𝐹) ∈ V)
268, 25eqeltrid 2275 . . . . 5 (𝑊 ∈ V → 𝐾 ∈ V)
27 funfvex 5546 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
2827funfni 5330 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
2919, 28mpan 424 . . . . . 6 (𝑊 ∈ V → (Base‘𝑊) ∈ V)
3011, 29eqeltrid 2275 . . . . 5 (𝑊 ∈ V → 𝐵 ∈ V)
31 mpoexga 6230 . . . . 5 ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V)
3226, 30, 31syl2anc 411 . . . 4 (𝑊 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V)
333, 17, 18, 32fvmptd3 5624 . . 3 (𝑊 ∈ V → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
342, 33syl 14 . 2 (𝑊𝑉 → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
351, 34eqtrid 2233 1 (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wcel 2159  Vcvv 2751   Fn wfn 5225  cfv 5230  (class class class)co 5890  cmpo 5892  Basecbs 12479  Scalarcsca 12557   ·𝑠 cvsca 12558   ·sf cscaf 13564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-cnex 7919  ax-resscn 7920  ax-1re 7922  ax-addrcl 7925
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-inn 8937  df-2 8995  df-3 8996  df-4 8997  df-5 8998  df-ndx 12482  df-slot 12483  df-base 12485  df-sca 12570  df-scaf 13566
This theorem is referenced by:  scafvalg  13583  scafeqg  13584  scaffng  13585  lmodscaf  13586
  Copyright terms: Public domain W3C validator