ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffvalg GIF version

Theorem scaffvalg 13938
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scaffvalg (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥, · ,𝑦   𝑥,𝑊,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   (𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem scaffvalg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2 = ( ·sf𝑊)
2 elex 2774 . . 3 (𝑊𝑉𝑊 ∈ V)
3 df-scaf 13922 . . . 4 ·sf = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)))
4 fveq2 5561 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
5 scaffval.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
64, 5eqtr4di 2247 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
76fveq2d 5565 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
8 scaffval.k . . . . . 6 𝐾 = (Base‘𝐹)
97, 8eqtr4di 2247 . . . . 5 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
10 fveq2 5561 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
11 scaffval.b . . . . . 6 𝐵 = (Base‘𝑊)
1210, 11eqtr4di 2247 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
13 fveq2 5561 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
14 scaffval.s . . . . . . 7 · = ( ·𝑠𝑊)
1513, 14eqtr4di 2247 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
1615oveqd 5942 . . . . 5 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)𝑦) = (𝑥 · 𝑦))
179, 12, 16mpoeq123dv 5988 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
18 elex 2774 . . . 4 (𝑊 ∈ V → 𝑊 ∈ V)
19 basfn 12761 . . . . . . 7 Base Fn V
20 scaslid 12855 . . . . . . . . 9 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
2120slotex 12730 . . . . . . . 8 (𝑊 ∈ V → (Scalar‘𝑊) ∈ V)
225, 21eqeltrid 2283 . . . . . . 7 (𝑊 ∈ V → 𝐹 ∈ V)
23 funfvex 5578 . . . . . . . 8 ((Fun Base ∧ 𝐹 ∈ dom Base) → (Base‘𝐹) ∈ V)
2423funfni 5361 . . . . . . 7 ((Base Fn V ∧ 𝐹 ∈ V) → (Base‘𝐹) ∈ V)
2519, 22, 24sylancr 414 . . . . . 6 (𝑊 ∈ V → (Base‘𝐹) ∈ V)
268, 25eqeltrid 2283 . . . . 5 (𝑊 ∈ V → 𝐾 ∈ V)
27 funfvex 5578 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
2827funfni 5361 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
2919, 28mpan 424 . . . . . 6 (𝑊 ∈ V → (Base‘𝑊) ∈ V)
3011, 29eqeltrid 2283 . . . . 5 (𝑊 ∈ V → 𝐵 ∈ V)
31 mpoexga 6279 . . . . 5 ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V)
3226, 30, 31syl2anc 411 . . . 4 (𝑊 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V)
333, 17, 18, 32fvmptd3 5658 . . 3 (𝑊 ∈ V → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
342, 33syl 14 . 2 (𝑊𝑉 → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
351, 34eqtrid 2241 1 (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763   Fn wfn 5254  cfv 5259  (class class class)co 5925  cmpo 5927  Basecbs 12703  Scalarcsca 12783   ·𝑠 cvsca 12784   ·sf cscaf 13920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-ndx 12706  df-slot 12707  df-base 12709  df-sca 12796  df-scaf 13922
This theorem is referenced by:  scafvalg  13939  scafeqg  13940  scaffng  13941  lmodscaf  13942
  Copyright terms: Public domain W3C validator