| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-sub | GIF version | ||
| Description: Define subtraction. Theorem subval 8220 shows its value (and describes how this definition works), Theorem subaddi 8315 relates it to addition, and Theorems subcli 8304 and resubcli 8291 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmin 8199 | . 2 class − | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cc 7879 | . . 3 class ℂ | |
| 5 | 3 | cv 1363 | . . . . . 6 class 𝑦 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1363 | . . . . . 6 class 𝑧 |
| 8 | caddc 7884 | . . . . . 6 class + | |
| 9 | 5, 7, 8 | co 5923 | . . . . 5 class (𝑦 + 𝑧) |
| 10 | 2 | cv 1363 | . . . . 5 class 𝑥 |
| 11 | 9, 10 | wceq 1364 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
| 12 | 11, 6, 4 | crio 5877 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
| 13 | 2, 3, 4, 4, 12 | cmpo 5925 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| 14 | 1, 13 | wceq 1364 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Colors of variables: wff set class |
| This definition is referenced by: subval 8220 subf 8230 cndsex 14119 |
| Copyright terms: Public domain | W3C validator |