| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-sub | GIF version | ||
| Description: Define subtraction. Theorem subval 8235 shows its value (and describes how this definition works), Theorem subaddi 8330 relates it to addition, and Theorems subcli 8319 and resubcli 8306 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmin 8214 | . 2 class − | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cc 7894 | . . 3 class ℂ | |
| 5 | 3 | cv 1363 | . . . . . 6 class 𝑦 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1363 | . . . . . 6 class 𝑧 |
| 8 | caddc 7899 | . . . . . 6 class + | |
| 9 | 5, 7, 8 | co 5925 | . . . . 5 class (𝑦 + 𝑧) |
| 10 | 2 | cv 1363 | . . . . 5 class 𝑥 |
| 11 | 9, 10 | wceq 1364 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
| 12 | 11, 6, 4 | crio 5879 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
| 13 | 2, 3, 4, 4, 12 | cmpo 5927 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| 14 | 1, 13 | wceq 1364 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Colors of variables: wff set class |
| This definition is referenced by: subval 8235 subf 8245 cndsex 14185 |
| Copyright terms: Public domain | W3C validator |