ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sub GIF version

Definition df-sub 8252
Description: Define subtraction. Theorem subval 8271 shows its value (and describes how this definition works), Theorem subaddi 8366 relates it to addition, and Theorems subcli 8355 and resubcli 8342 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 8250 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 7930 . . 3 class
53cv 1372 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1372 . . . . . 6 class 𝑧
8 caddc 7935 . . . . . 6 class +
95, 7, 8co 5951 . . . . 5 class (𝑦 + 𝑧)
102cv 1372 . . . . 5 class 𝑥
119, 10wceq 1373 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 5905 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 5953 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1373 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff set class
This definition is referenced by:  subval  8271  subf  8281  cndsex  14359
  Copyright terms: Public domain W3C validator