| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-sub | GIF version | ||
| Description: Define subtraction. Theorem subval 8271 shows its value (and describes how this definition works), Theorem subaddi 8366 relates it to addition, and Theorems subcli 8355 and resubcli 8342 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmin 8250 | . 2 class − | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cc 7930 | . . 3 class ℂ | |
| 5 | 3 | cv 1372 | . . . . . 6 class 𝑦 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1372 | . . . . . 6 class 𝑧 |
| 8 | caddc 7935 | . . . . . 6 class + | |
| 9 | 5, 7, 8 | co 5951 | . . . . 5 class (𝑦 + 𝑧) |
| 10 | 2 | cv 1372 | . . . . 5 class 𝑥 |
| 11 | 9, 10 | wceq 1373 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
| 12 | 11, 6, 4 | crio 5905 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
| 13 | 2, 3, 4, 4, 12 | cmpo 5953 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| 14 | 1, 13 | wceq 1373 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Colors of variables: wff set class |
| This definition is referenced by: subval 8271 subf 8281 cndsex 14359 |
| Copyright terms: Public domain | W3C validator |