ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sub GIF version

Definition df-sub 8218
Description: Define subtraction. Theorem subval 8237 shows its value (and describes how this definition works), Theorem subaddi 8332 relates it to addition, and Theorems subcli 8321 and resubcli 8308 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 8216 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 7896 . . 3 class
53cv 1363 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1363 . . . . . 6 class 𝑧
8 caddc 7901 . . . . . 6 class +
95, 7, 8co 5925 . . . . 5 class (𝑦 + 𝑧)
102cv 1363 . . . . 5 class 𝑥
119, 10wceq 1364 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 5879 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 5927 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1364 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff set class
This definition is referenced by:  subval  8237  subf  8247  cndsex  14187
  Copyright terms: Public domain W3C validator