Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-sub | GIF version |
Description: Define subtraction. Theorem subval 8050 shows its value (and describes how this definition works), Theorem subaddi 8145 relates it to addition, and Theorems subcli 8134 and resubcli 8121 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
Ref | Expression |
---|---|
df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmin 8029 | . 2 class − | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cc 7713 | . . 3 class ℂ | |
5 | 3 | cv 1334 | . . . . . 6 class 𝑦 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1334 | . . . . . 6 class 𝑧 |
8 | caddc 7718 | . . . . . 6 class + | |
9 | 5, 7, 8 | co 5818 | . . . . 5 class (𝑦 + 𝑧) |
10 | 2 | cv 1334 | . . . . 5 class 𝑥 |
11 | 9, 10 | wceq 1335 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
12 | 11, 6, 4 | crio 5773 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
13 | 2, 3, 4, 4, 12 | cmpo 5820 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
14 | 1, 13 | wceq 1335 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Colors of variables: wff set class |
This definition is referenced by: subval 8050 subf 8060 |
Copyright terms: Public domain | W3C validator |