ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sub GIF version

Definition df-sub 8067
Description: Define subtraction. Theorem subval 8086 shows its value (and describes how this definition works), Theorem subaddi 8181 relates it to addition, and Theorems subcli 8170 and resubcli 8157 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 8065 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 7747 . . 3 class
53cv 1342 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1342 . . . . . 6 class 𝑧
8 caddc 7752 . . . . . 6 class +
95, 7, 8co 5841 . . . . 5 class (𝑦 + 𝑧)
102cv 1342 . . . . 5 class 𝑥
119, 10wceq 1343 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 5796 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 5843 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1343 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff set class
This definition is referenced by:  subval  8086  subf  8096
  Copyright terms: Public domain W3C validator