ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sub GIF version

Definition df-sub 8092
Description: Define subtraction. Theorem subval 8111 shows its value (and describes how this definition works), Theorem subaddi 8206 relates it to addition, and Theorems subcli 8195 and resubcli 8182 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 8090 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 7772 . . 3 class
53cv 1347 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1347 . . . . . 6 class 𝑧
8 caddc 7777 . . . . . 6 class +
95, 7, 8co 5853 . . . . 5 class (𝑦 + 𝑧)
102cv 1347 . . . . 5 class 𝑥
119, 10wceq 1348 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 5808 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 5855 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1348 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff set class
This definition is referenced by:  subval  8111  subf  8121
  Copyright terms: Public domain W3C validator