| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-sub | GIF version | ||
| Description: Define subtraction. Theorem subval 8218 shows its value (and describes how this definition works), Theorem subaddi 8313 relates it to addition, and Theorems subcli 8302 and resubcli 8289 prove its closure laws. (Contributed by NM, 26-Nov-1994.) | 
| Ref | Expression | 
|---|---|
| df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cmin 8197 | . 2 class − | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cc 7877 | . . 3 class ℂ | |
| 5 | 3 | cv 1363 | . . . . . 6 class 𝑦 | 
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1363 | . . . . . 6 class 𝑧 | 
| 8 | caddc 7882 | . . . . . 6 class + | |
| 9 | 5, 7, 8 | co 5922 | . . . . 5 class (𝑦 + 𝑧) | 
| 10 | 2 | cv 1363 | . . . . 5 class 𝑥 | 
| 11 | 9, 10 | wceq 1364 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 | 
| 12 | 11, 6, 4 | crio 5876 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) | 
| 13 | 2, 3, 4, 4, 12 | cmpo 5924 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | 
| 14 | 1, 13 | wceq 1364 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | 
| Colors of variables: wff set class | 
| This definition is referenced by: subval 8218 subf 8228 cndsex 14109 | 
| Copyright terms: Public domain | W3C validator |