ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sub GIF version

Definition df-sub 8287
Description: Define subtraction. Theorem subval 8306 shows its value (and describes how this definition works), Theorem subaddi 8401 relates it to addition, and Theorems subcli 8390 and resubcli 8377 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 8285 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 7965 . . 3 class
53cv 1374 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1374 . . . . . 6 class 𝑧
8 caddc 7970 . . . . . 6 class +
95, 7, 8co 5974 . . . . 5 class (𝑦 + 𝑧)
102cv 1374 . . . . 5 class 𝑥
119, 10wceq 1375 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 5926 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 5976 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1375 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff set class
This definition is referenced by:  subval  8306  subf  8316  cndsex  14482
  Copyright terms: Public domain W3C validator