| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-sub | GIF version | ||
| Description: Define subtraction. Theorem subval 8306 shows its value (and describes how this definition works), Theorem subaddi 8401 relates it to addition, and Theorems subcli 8390 and resubcli 8377 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmin 8285 | . 2 class − | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cc 7965 | . . 3 class ℂ | |
| 5 | 3 | cv 1374 | . . . . . 6 class 𝑦 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1374 | . . . . . 6 class 𝑧 |
| 8 | caddc 7970 | . . . . . 6 class + | |
| 9 | 5, 7, 8 | co 5974 | . . . . 5 class (𝑦 + 𝑧) |
| 10 | 2 | cv 1374 | . . . . 5 class 𝑥 |
| 11 | 9, 10 | wceq 1375 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
| 12 | 11, 6, 4 | crio 5926 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
| 13 | 2, 3, 4, 4, 12 | cmpo 5976 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| 14 | 1, 13 | wceq 1375 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Colors of variables: wff set class |
| This definition is referenced by: subval 8306 subf 8316 cndsex 14482 |
| Copyright terms: Public domain | W3C validator |