ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sub GIF version

Definition df-sub 8132
Description: Define subtraction. Theorem subval 8151 shows its value (and describes how this definition works), Theorem subaddi 8246 relates it to addition, and Theorems subcli 8235 and resubcli 8222 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 8130 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 7811 . . 3 class
53cv 1352 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1352 . . . . . 6 class 𝑧
8 caddc 7816 . . . . . 6 class +
95, 7, 8co 5877 . . . . 5 class (𝑦 + 𝑧)
102cv 1352 . . . . 5 class 𝑥
119, 10wceq 1353 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 5832 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 5879 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1353 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff set class
This definition is referenced by:  subval  8151  subf  8161
  Copyright terms: Public domain W3C validator