ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sub GIF version

Definition df-sub 8327
Description: Define subtraction. Theorem subval 8346 shows its value (and describes how this definition works), Theorem subaddi 8441 relates it to addition, and Theorems subcli 8430 and resubcli 8417 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 8325 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 8005 . . 3 class
53cv 1394 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1394 . . . . . 6 class 𝑧
8 caddc 8010 . . . . . 6 class +
95, 7, 8co 6007 . . . . 5 class (𝑦 + 𝑧)
102cv 1394 . . . . 5 class 𝑥
119, 10wceq 1395 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 5959 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 6009 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1395 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff set class
This definition is referenced by:  subval  8346  subf  8356  cndsex  14525
  Copyright terms: Public domain W3C validator