Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-sub | GIF version |
Description: Define subtraction. Theorem subval 8086 shows its value (and describes how this definition works), Theorem subaddi 8181 relates it to addition, and Theorems subcli 8170 and resubcli 8157 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
Ref | Expression |
---|---|
df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmin 8065 | . 2 class − | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cc 7747 | . . 3 class ℂ | |
5 | 3 | cv 1342 | . . . . . 6 class 𝑦 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1342 | . . . . . 6 class 𝑧 |
8 | caddc 7752 | . . . . . 6 class + | |
9 | 5, 7, 8 | co 5841 | . . . . 5 class (𝑦 + 𝑧) |
10 | 2 | cv 1342 | . . . . 5 class 𝑥 |
11 | 9, 10 | wceq 1343 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
12 | 11, 6, 4 | crio 5796 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
13 | 2, 3, 4, 4, 12 | cmpo 5843 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
14 | 1, 13 | wceq 1343 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Colors of variables: wff set class |
This definition is referenced by: subval 8086 subf 8096 |
Copyright terms: Public domain | W3C validator |