ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sub GIF version

Definition df-sub 8194
Description: Define subtraction. Theorem subval 8213 shows its value (and describes how this definition works), Theorem subaddi 8308 relates it to addition, and Theorems subcli 8297 and resubcli 8284 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 8192 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 7872 . . 3 class
53cv 1363 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1363 . . . . . 6 class 𝑧
8 caddc 7877 . . . . . 6 class +
95, 7, 8co 5919 . . . . 5 class (𝑦 + 𝑧)
102cv 1363 . . . . 5 class 𝑥
119, 10wceq 1364 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 5873 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 5921 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1364 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff set class
This definition is referenced by:  subval  8213  subf  8223  cndsex  14052
  Copyright terms: Public domain W3C validator