ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subval GIF version

Theorem subval 8090
Description: Value of subtraction, which is the (unique) element 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
subval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem subval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negeu 8089 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)
2 riotacl 5812 . . . 4 (∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴 → (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ)
31, 2syl 14 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ)
43ancoms 266 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ)
5 eqeq2 2175 . . . 4 (𝑦 = 𝐴 → ((𝑧 + 𝑥) = 𝑦 ↔ (𝑧 + 𝑥) = 𝐴))
65riotabidv 5800 . . 3 (𝑦 = 𝐴 → (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦) = (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴))
7 oveq1 5849 . . . . 5 (𝑧 = 𝐵 → (𝑧 + 𝑥) = (𝐵 + 𝑥))
87eqeq1d 2174 . . . 4 (𝑧 = 𝐵 → ((𝑧 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = 𝐴))
98riotabidv 5800 . . 3 (𝑧 = 𝐵 → (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
10 df-sub 8071 . . 3 − = (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦))
116, 9, 10ovmpog 5976 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
124, 11mpd3an3 1328 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  ∃!wreu 2446  crio 5797  (class class class)co 5842  cc 7751   + caddc 7756  cmin 8069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071
This theorem is referenced by:  subcl  8097  subf  8100  subadd  8101
  Copyright terms: Public domain W3C validator