| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subval | GIF version | ||
| Description: Value of subtraction, which is the (unique) element 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.) |
| Ref | Expression |
|---|---|
| subval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeu 8345 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) | |
| 2 | riotacl 5976 | . . . 4 ⊢ (∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴 → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) |
| 4 | 3 | ancoms 268 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) |
| 5 | eqeq2 2239 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑧 + 𝑥) = 𝑦 ↔ (𝑧 + 𝑥) = 𝐴)) | |
| 6 | 5 | riotabidv 5962 | . . 3 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦) = (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴)) |
| 7 | oveq1 6014 | . . . . 5 ⊢ (𝑧 = 𝐵 → (𝑧 + 𝑥) = (𝐵 + 𝑥)) | |
| 8 | 7 | eqeq1d 2238 | . . . 4 ⊢ (𝑧 = 𝐵 → ((𝑧 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = 𝐴)) |
| 9 | 8 | riotabidv 5962 | . . 3 ⊢ (𝑧 = 𝐵 → (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
| 10 | df-sub 8327 | . . 3 ⊢ − = (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦)) | |
| 11 | 6, 9, 10 | ovmpog 6145 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
| 12 | 4, 11 | mpd3an3 1372 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∃!wreu 2510 ℩crio 5959 (class class class)co 6007 ℂcc 8005 + caddc 8010 − cmin 8325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8099 ax-1cn 8100 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-sub 8327 |
| This theorem is referenced by: subcl 8353 subf 8356 subadd 8357 |
| Copyright terms: Public domain | W3C validator |