Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > subval | GIF version |
Description: Value of subtraction, which is the (unique) element 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.) |
Ref | Expression |
---|---|
subval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeu 8110 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) | |
2 | riotacl 5823 | . . . 4 ⊢ (∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴 → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) |
4 | 3 | ancoms 266 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) |
5 | eqeq2 2180 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑧 + 𝑥) = 𝑦 ↔ (𝑧 + 𝑥) = 𝐴)) | |
6 | 5 | riotabidv 5811 | . . 3 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦) = (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴)) |
7 | oveq1 5860 | . . . . 5 ⊢ (𝑧 = 𝐵 → (𝑧 + 𝑥) = (𝐵 + 𝑥)) | |
8 | 7 | eqeq1d 2179 | . . . 4 ⊢ (𝑧 = 𝐵 → ((𝑧 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = 𝐴)) |
9 | 8 | riotabidv 5811 | . . 3 ⊢ (𝑧 = 𝐵 → (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
10 | df-sub 8092 | . . 3 ⊢ − = (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦)) | |
11 | 6, 9, 10 | ovmpog 5987 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
12 | 4, 11 | mpd3an3 1333 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∃!wreu 2450 ℩crio 5808 (class class class)co 5853 ℂcc 7772 + caddc 7777 − cmin 8090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 |
This theorem is referenced by: subcl 8118 subf 8121 subadd 8122 |
Copyright terms: Public domain | W3C validator |