ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subval GIF version

Theorem subval 7966
Description: Value of subtraction, which is the (unique) element 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
subval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem subval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negeu 7965 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)
2 riotacl 5744 . . . 4 (∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴 → (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ)
31, 2syl 14 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ)
43ancoms 266 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ)
5 eqeq2 2149 . . . 4 (𝑦 = 𝐴 → ((𝑧 + 𝑥) = 𝑦 ↔ (𝑧 + 𝑥) = 𝐴))
65riotabidv 5732 . . 3 (𝑦 = 𝐴 → (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦) = (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴))
7 oveq1 5781 . . . . 5 (𝑧 = 𝐵 → (𝑧 + 𝑥) = (𝐵 + 𝑥))
87eqeq1d 2148 . . . 4 (𝑧 = 𝐵 → ((𝑧 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = 𝐴))
98riotabidv 5732 . . 3 (𝑧 = 𝐵 → (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
10 df-sub 7947 . . 3 − = (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦))
116, 9, 10ovmpog 5905 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
124, 11mpd3an3 1316 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  ∃!wreu 2418  crio 5729  (class class class)co 5774  cc 7630   + caddc 7635  cmin 7945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-resscn 7724  ax-1cn 7725  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7947
This theorem is referenced by:  subcl  7973  subf  7976  subadd  7977
  Copyright terms: Public domain W3C validator