HomeHome Intuitionistic Logic Explorer
Theorem List (p. 82 of 150)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8101-8200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaddid1i 8101 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
𝐴 ∈ β„‚    β‡’   (𝐴 + 0) = 𝐴
 
Theoremaddid2i 8102 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.)
𝐴 ∈ β„‚    β‡’   (0 + 𝐴) = 𝐴
 
Theoremaddcomi 8103 Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    β‡’   (𝐴 + 𝐡) = (𝐡 + 𝐴)
 
Theoremaddcomli 8104 Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   (𝐴 + 𝐡) = 𝐢    β‡’   (𝐡 + 𝐴) = 𝐢
 
Theoremmul12i 8105 Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    β‡’   (𝐴 Β· (𝐡 Β· 𝐢)) = (𝐡 Β· (𝐴 Β· 𝐢))
 
Theoremmul32i 8106 Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    β‡’   ((𝐴 Β· 𝐡) Β· 𝐢) = ((𝐴 Β· 𝐢) Β· 𝐡)
 
Theoremmul4i 8107 Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    &   π· ∈ β„‚    β‡’   ((𝐴 Β· 𝐡) Β· (𝐢 Β· 𝐷)) = ((𝐴 Β· 𝐢) Β· (𝐡 Β· 𝐷))
 
Theoremaddid1d 8108 0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐴 + 0) = 𝐴)
 
Theoremaddid2d 8109 0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ (0 + 𝐴) = 𝐴)
 
Theoremaddcomd 8110 Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐴 + 𝐡) = (𝐡 + 𝐴))
 
Theoremmul12d 8111 Commutative/associative law that swaps the first two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐴 Β· (𝐡 Β· 𝐢)) = (𝐡 Β· (𝐴 Β· 𝐢)))
 
Theoremmul32d 8112 Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ ((𝐴 Β· 𝐡) Β· 𝐢) = ((𝐴 Β· 𝐢) Β· 𝐡))
 
Theoremmul31d 8113 Commutative/associative law. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ ((𝐴 Β· 𝐡) Β· 𝐢) = ((𝐢 Β· 𝐡) Β· 𝐴))
 
Theoremmul4d 8114 Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ 𝐷 ∈ β„‚)    β‡’   (πœ‘ β†’ ((𝐴 Β· 𝐡) Β· (𝐢 Β· 𝐷)) = ((𝐴 Β· 𝐢) Β· (𝐡 Β· 𝐷)))
 
Theoremmuladd11r 8115 A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐴 + 1) Β· (𝐡 + 1)) = (((𝐴 Β· 𝐡) + (𝐴 + 𝐡)) + 1))
 
Theoremcomraddd 8116 Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.)
(πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ 𝐴 = (𝐡 + 𝐢))    β‡’   (πœ‘ β†’ 𝐴 = (𝐢 + 𝐡))
 
4.3  Real and complex numbers - basic operations
 
4.3.1  Addition
 
Theoremadd12 8117 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 11-May-2004.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ (𝐴 + (𝐡 + 𝐢)) = (𝐡 + (𝐴 + 𝐢)))
 
Theoremadd32 8118 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 13-Nov-1999.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐡) + 𝐢) = ((𝐴 + 𝐢) + 𝐡))
 
Theoremadd32r 8119 Commutative/associative law that swaps the last two terms in a triple sum, rearranging the parentheses. (Contributed by Paul Chapman, 18-May-2007.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ (𝐴 + (𝐡 + 𝐢)) = ((𝐴 + 𝐢) + 𝐡))
 
Theoremadd4 8120 Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) ∧ (𝐢 ∈ β„‚ ∧ 𝐷 ∈ β„‚)) β†’ ((𝐴 + 𝐡) + (𝐢 + 𝐷)) = ((𝐴 + 𝐢) + (𝐡 + 𝐷)))
 
Theoremadd42 8121 Rearrangement of 4 terms in a sum. (Contributed by NM, 12-May-2005.)
(((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) ∧ (𝐢 ∈ β„‚ ∧ 𝐷 ∈ β„‚)) β†’ ((𝐴 + 𝐡) + (𝐢 + 𝐷)) = ((𝐴 + 𝐢) + (𝐷 + 𝐡)))
 
Theoremadd12i 8122 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 21-Jan-1997.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    β‡’   (𝐴 + (𝐡 + 𝐢)) = (𝐡 + (𝐴 + 𝐢))
 
Theoremadd32i 8123 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 21-Jan-1997.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    β‡’   ((𝐴 + 𝐡) + 𝐢) = ((𝐴 + 𝐢) + 𝐡)
 
Theoremadd4i 8124 Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    &   π· ∈ β„‚    β‡’   ((𝐴 + 𝐡) + (𝐢 + 𝐷)) = ((𝐴 + 𝐢) + (𝐡 + 𝐷))
 
Theoremadd42i 8125 Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    &   π· ∈ β„‚    β‡’   ((𝐴 + 𝐡) + (𝐢 + 𝐷)) = ((𝐴 + 𝐢) + (𝐷 + 𝐡))
 
Theoremadd12d 8126 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐴 + (𝐡 + 𝐢)) = (𝐡 + (𝐴 + 𝐢)))
 
Theoremadd32d 8127 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ ((𝐴 + 𝐡) + 𝐢) = ((𝐴 + 𝐢) + 𝐡))
 
Theoremadd4d 8128 Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ 𝐷 ∈ β„‚)    β‡’   (πœ‘ β†’ ((𝐴 + 𝐡) + (𝐢 + 𝐷)) = ((𝐴 + 𝐢) + (𝐡 + 𝐷)))
 
Theoremadd42d 8129 Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ 𝐷 ∈ β„‚)    β‡’   (πœ‘ β†’ ((𝐴 + 𝐡) + (𝐢 + 𝐷)) = ((𝐴 + 𝐢) + (𝐷 + 𝐡)))
 
4.3.2  Subtraction
 
Syntaxcmin 8130 Extend class notation to include subtraction.
class βˆ’
 
Syntaxcneg 8131 Extend class notation to include unary minus. The symbol - is not a class by itself but part of a compound class definition. We do this rather than making it a formal function since it is so commonly used. Note: We use different symbols for unary minus (-) and subtraction cmin 8130 (βˆ’) to prevent syntax ambiguity. For example, looking at the syntax definition co 5877, if we used the same symbol then "( βˆ’ 𝐴 βˆ’ 𝐡) " could mean either "βˆ’ 𝐴 " minus "𝐡", or it could represent the (meaningless) operation of classes "βˆ’ " and "βˆ’ 𝐡 " connected with "operation" "𝐴". On the other hand, "(-𝐴 βˆ’ 𝐡) " is unambiguous.
class -𝐴
 
Definitiondf-sub 8132* Define subtraction. Theorem subval 8151 shows its value (and describes how this definition works), Theorem subaddi 8246 relates it to addition, and Theorems subcli 8235 and resubcli 8222 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
βˆ’ = (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (℩𝑧 ∈ β„‚ (𝑦 + 𝑧) = π‘₯))
 
Definitiondf-neg 8133 Define the negative of a number (unary minus). We use different symbols for unary minus (-) and subtraction (βˆ’) to prevent syntax ambiguity. See cneg 8131 for a discussion of this. (Contributed by NM, 10-Feb-1995.)
-𝐴 = (0 βˆ’ 𝐴)
 
Theoremcnegexlem1 8134 Addition cancellation of a real number from two complex numbers. Lemma for cnegex 8137. (Contributed by Eric Schmidt, 22-May-2007.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐡) = (𝐴 + 𝐢) ↔ 𝐡 = 𝐢))
 
Theoremcnegexlem2 8135 Existence of a real number which produces a real number when multiplied by i. (Hint: zero is such a number, although we don't need to prove that yet). Lemma for cnegex 8137. (Contributed by Eric Schmidt, 22-May-2007.)
βˆƒπ‘¦ ∈ ℝ (i Β· 𝑦) ∈ ℝ
 
Theoremcnegexlem3 8136* Existence of real number difference. Lemma for cnegex 8137. (Contributed by Eric Schmidt, 22-May-2007.)
((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) β†’ βˆƒπ‘ ∈ ℝ (𝑏 + 𝑐) = 𝑦)
 
Theoremcnegex 8137* Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007.)
(𝐴 ∈ β„‚ β†’ βˆƒπ‘₯ ∈ β„‚ (𝐴 + π‘₯) = 0)
 
Theoremcnegex2 8138* Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ β„‚ β†’ βˆƒπ‘₯ ∈ β„‚ (π‘₯ + 𝐴) = 0)
 
Theoremaddcan 8139 Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐡) = (𝐴 + 𝐢) ↔ 𝐡 = 𝐢))
 
Theoremaddcan2 8140 Cancellation law for addition. (Contributed by NM, 30-Jul-2004.) (Revised by Scott Fenton, 3-Jan-2013.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐢) = (𝐡 + 𝐢) ↔ 𝐴 = 𝐡))
 
Theoremaddcani 8141 Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 27-Oct-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    β‡’   ((𝐴 + 𝐡) = (𝐴 + 𝐢) ↔ 𝐡 = 𝐢)
 
Theoremaddcan2i 8142 Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 14-May-2003.) (Revised by Scott Fenton, 3-Jan-2013.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    β‡’   ((𝐴 + 𝐢) = (𝐡 + 𝐢) ↔ 𝐴 = 𝐡)
 
Theoremaddcand 8143 Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ ((𝐴 + 𝐡) = (𝐴 + 𝐢) ↔ 𝐡 = 𝐢))
 
Theoremaddcan2d 8144 Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ ((𝐴 + 𝐢) = (𝐡 + 𝐢) ↔ 𝐴 = 𝐡))
 
Theoremaddcanad 8145 Cancelling a term on the left-hand side of a sum in an equality. Consequence of addcand 8143. (Contributed by David Moews, 28-Feb-2017.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ (𝐴 + 𝐡) = (𝐴 + 𝐢))    β‡’   (πœ‘ β†’ 𝐡 = 𝐢)
 
Theoremaddcan2ad 8146 Cancelling a term on the right-hand side of a sum in an equality. Consequence of addcan2d 8144. (Contributed by David Moews, 28-Feb-2017.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ (𝐴 + 𝐢) = (𝐡 + 𝐢))    β‡’   (πœ‘ β†’ 𝐴 = 𝐡)
 
Theoremaddneintrd 8147 Introducing a term on the left-hand side of a sum in a negated equality. Contrapositive of addcanad 8145. Consequence of addcand 8143. (Contributed by David Moews, 28-Feb-2017.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 β‰  𝐢)    β‡’   (πœ‘ β†’ (𝐴 + 𝐡) β‰  (𝐴 + 𝐢))
 
Theoremaddneintr2d 8148 Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad 8146. Consequence of addcan2d 8144. (Contributed by David Moews, 28-Feb-2017.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    β‡’   (πœ‘ β†’ (𝐴 + 𝐢) β‰  (𝐡 + 𝐢))
 
Theorem0cnALT 8149 Alternate proof of 0cn 7951. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
0 ∈ β„‚
 
Theoremnegeu 8150* Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ βˆƒ!π‘₯ ∈ β„‚ (𝐴 + π‘₯) = 𝐡)
 
Theoremsubval 8151* Value of subtraction, which is the (unique) element π‘₯ such that 𝐡 + π‘₯ = 𝐴. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 βˆ’ 𝐡) = (β„©π‘₯ ∈ β„‚ (𝐡 + π‘₯) = 𝐴))
 
Theoremnegeq 8152 Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.)
(𝐴 = 𝐡 β†’ -𝐴 = -𝐡)
 
Theoremnegeqi 8153 Equality inference for negatives. (Contributed by NM, 14-Feb-1995.)
𝐴 = 𝐡    β‡’   -𝐴 = -𝐡
 
Theoremnegeqd 8154 Equality deduction for negatives. (Contributed by NM, 14-May-1999.)
(πœ‘ β†’ 𝐴 = 𝐡)    β‡’   (πœ‘ β†’ -𝐴 = -𝐡)
 
Theoremnfnegd 8155 Deduction version of nfneg 8156. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
(πœ‘ β†’ β„²π‘₯𝐴)    β‡’   (πœ‘ β†’ β„²π‘₯-𝐴)
 
Theoremnfneg 8156 Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
β„²π‘₯𝐴    β‡’   β„²π‘₯-𝐴
 
Theoremcsbnegg 8157 Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐴 ∈ 𝑉 β†’ ⦋𝐴 / π‘₯⦌-𝐡 = -⦋𝐴 / π‘₯⦌𝐡)
 
Theoremsubcl 8158 Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 βˆ’ 𝐡) ∈ β„‚)
 
Theoremnegcl 8159 Closure law for negative. (Contributed by NM, 6-Aug-2003.)
(𝐴 ∈ β„‚ β†’ -𝐴 ∈ β„‚)
 
Theoremnegicn 8160 -i is a complex number (common case). (Contributed by David A. Wheeler, 7-Dec-2018.)
-i ∈ β„‚
 
Theoremsubf 8161 Subtraction is an operation on the complex numbers. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
βˆ’ :(β„‚ Γ— β„‚)βŸΆβ„‚
 
Theoremsubadd 8162 Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 βˆ’ 𝐡) = 𝐢 ↔ (𝐡 + 𝐢) = 𝐴))
 
Theoremsubadd2 8163 Relationship between subtraction and addition. (Contributed by Scott Fenton, 5-Jul-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 βˆ’ 𝐡) = 𝐢 ↔ (𝐢 + 𝐡) = 𝐴))
 
Theoremsubsub23 8164 Swap subtrahend and result of subtraction. (Contributed by NM, 14-Dec-2007.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 βˆ’ 𝐡) = 𝐢 ↔ (𝐴 βˆ’ 𝐢) = 𝐡))
 
Theorempncan 8165 Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐴 + 𝐡) βˆ’ 𝐡) = 𝐴)
 
Theorempncan2 8166 Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐴 + 𝐡) βˆ’ 𝐴) = 𝐡)
 
Theorempncan3 8167 Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 + (𝐡 βˆ’ 𝐴)) = 𝐡)
 
Theoremnpcan 8168 Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐴 βˆ’ 𝐡) + 𝐡) = 𝐴)
 
Theoremaddsubass 8169 Associative-type law for addition and subtraction. (Contributed by NM, 6-Aug-2003.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐡) βˆ’ 𝐢) = (𝐴 + (𝐡 βˆ’ 𝐢)))
 
Theoremaddsub 8170 Law for addition and subtraction. (Contributed by NM, 19-Aug-2001.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐡) βˆ’ 𝐢) = ((𝐴 βˆ’ 𝐢) + 𝐡))
 
Theoremsubadd23 8171 Commutative/associative law for addition and subtraction. (Contributed by NM, 1-Feb-2007.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 βˆ’ 𝐡) + 𝐢) = (𝐴 + (𝐢 βˆ’ 𝐡)))
 
Theoremaddsub12 8172 Commutative/associative law for addition and subtraction. (Contributed by NM, 8-Feb-2005.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ (𝐴 + (𝐡 βˆ’ 𝐢)) = (𝐡 + (𝐴 βˆ’ 𝐢)))
 
Theorem2addsub 8173 Law for subtraction and addition. (Contributed by NM, 20-Nov-2005.)
(((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) ∧ (𝐢 ∈ β„‚ ∧ 𝐷 ∈ β„‚)) β†’ (((𝐴 + 𝐡) + 𝐢) βˆ’ 𝐷) = (((𝐴 + 𝐢) βˆ’ 𝐷) + 𝐡))
 
Theoremaddsubeq4 8174 Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010.)
(((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) ∧ (𝐢 ∈ β„‚ ∧ 𝐷 ∈ β„‚)) β†’ ((𝐴 + 𝐡) = (𝐢 + 𝐷) ↔ (𝐢 βˆ’ 𝐴) = (𝐡 βˆ’ 𝐷)))
 
Theorempncan3oi 8175 Subtraction and addition of equals. Almost but not exactly the same as pncan3i 8236 and pncan 8165, this order happens often when applying "operations to both sides" so create a theorem specifically for it. A deduction version of this is available as pncand 8271. (Contributed by David A. Wheeler, 11-Oct-2018.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    β‡’   ((𝐴 + 𝐡) βˆ’ 𝐡) = 𝐴
 
Theoremmvrraddi 8176 Move RHS right addition to LHS. (Contributed by David A. Wheeler, 11-Oct-2018.)
𝐡 ∈ β„‚    &   πΆ ∈ β„‚    &   π΄ = (𝐡 + 𝐢)    β‡’   (𝐴 βˆ’ 𝐢) = 𝐡
 
Theoremmvlladdi 8177 Move LHS left addition to RHS. (Contributed by David A. Wheeler, 11-Oct-2018.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   (𝐴 + 𝐡) = 𝐢    β‡’   π΅ = (𝐢 βˆ’ 𝐴)
 
Theoremsubid 8178 Subtraction of a number from itself. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ β„‚ β†’ (𝐴 βˆ’ 𝐴) = 0)
 
Theoremsubid1 8179 Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ β„‚ β†’ (𝐴 βˆ’ 0) = 𝐴)
 
Theoremnpncan 8180 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 βˆ’ 𝐡) + (𝐡 βˆ’ 𝐢)) = (𝐴 βˆ’ 𝐢))
 
Theoremnppcan 8181 Cancellation law for subtraction. (Contributed by NM, 1-Sep-2005.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ (((𝐴 βˆ’ 𝐡) + 𝐢) + 𝐡) = (𝐴 + 𝐢))
 
Theoremnnpcan 8182 Cancellation law for subtraction: ((a-b)-c)+b = a-c holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ (((𝐴 βˆ’ 𝐡) βˆ’ 𝐢) + 𝐡) = (𝐴 βˆ’ 𝐢))
 
Theoremnppcan3 8183 Cancellation law for subtraction. (Contributed by Mario Carneiro, 14-Sep-2015.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 βˆ’ 𝐡) + (𝐢 + 𝐡)) = (𝐴 + 𝐢))
 
Theoremsubcan2 8184 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 βˆ’ 𝐢) = (𝐡 βˆ’ 𝐢) ↔ 𝐴 = 𝐡))
 
Theoremsubeq0 8185 If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐴 βˆ’ 𝐡) = 0 ↔ 𝐴 = 𝐡))
 
Theoremnpncan2 8186 Cancellation law for subtraction. (Contributed by Scott Fenton, 21-Jun-2013.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((𝐴 βˆ’ 𝐡) + (𝐡 βˆ’ 𝐴)) = 0)
 
Theoremsubsub2 8187 Law for double subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ (𝐴 βˆ’ (𝐡 βˆ’ 𝐢)) = (𝐴 + (𝐢 βˆ’ 𝐡)))
 
Theoremnncan 8188 Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 βˆ’ (𝐴 βˆ’ 𝐡)) = 𝐡)
 
Theoremsubsub 8189 Law for double subtraction. (Contributed by NM, 13-May-2004.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ (𝐴 βˆ’ (𝐡 βˆ’ 𝐢)) = ((𝐴 βˆ’ 𝐡) + 𝐢))
 
Theoremnppcan2 8190 Cancellation law for subtraction. (Contributed by NM, 29-Sep-2005.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 βˆ’ (𝐡 + 𝐢)) + 𝐢) = (𝐴 βˆ’ 𝐡))
 
Theoremsubsub3 8191 Law for double subtraction. (Contributed by NM, 27-Jul-2005.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ (𝐴 βˆ’ (𝐡 βˆ’ 𝐢)) = ((𝐴 + 𝐢) βˆ’ 𝐡))
 
Theoremsubsub4 8192 Law for double subtraction. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 βˆ’ 𝐡) βˆ’ 𝐢) = (𝐴 βˆ’ (𝐡 + 𝐢)))
 
Theoremsub32 8193 Swap the second and third terms in a double subtraction. (Contributed by NM, 19-Aug-2005.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 βˆ’ 𝐡) βˆ’ 𝐢) = ((𝐴 βˆ’ 𝐢) βˆ’ 𝐡))
 
Theoremnnncan 8194 Cancellation law for subtraction. (Contributed by NM, 4-Sep-2005.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 βˆ’ (𝐡 βˆ’ 𝐢)) βˆ’ 𝐢) = (𝐴 βˆ’ 𝐡))
 
Theoremnnncan1 8195 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 βˆ’ 𝐡) βˆ’ (𝐴 βˆ’ 𝐢)) = (𝐢 βˆ’ 𝐡))
 
Theoremnnncan2 8196 Cancellation law for subtraction. (Contributed by NM, 1-Oct-2005.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 βˆ’ 𝐢) βˆ’ (𝐡 βˆ’ 𝐢)) = (𝐴 βˆ’ 𝐡))
 
Theoremnpncan3 8197 Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 βˆ’ 𝐡) + (𝐢 βˆ’ 𝐴)) = (𝐢 βˆ’ 𝐡))
 
Theorempnpcan 8198 Cancellation law for mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐡) βˆ’ (𝐴 + 𝐢)) = (𝐡 βˆ’ 𝐢))
 
Theorempnpcan2 8199 Cancellation law for mixed addition and subtraction. (Contributed by Scott Fenton, 9-Jun-2006.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐢) βˆ’ (𝐡 + 𝐢)) = (𝐴 βˆ’ 𝐡))
 
Theorempnncan 8200 Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐡) βˆ’ (𝐴 βˆ’ 𝐢)) = (𝐡 + 𝐢))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-14917
  Copyright terms: Public domain < Previous  Next >