HomeHome Intuitionistic Logic Explorer
Theorem List (p. 82 of 156)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8101-8200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremltleletr 8101 Transitive law, weaker form of (𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶. (Contributed by AV, 14-Oct-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremletr 8102 Transitive law. (Contributed by NM, 12-Nov-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremleid 8103 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.)
(𝐴 ∈ ℝ → 𝐴𝐴)
 
Theoremltne 8104 'Less than' implies not equal. See also ltap 8652 which is the same but for apartness. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.)
((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
 
Theoremltnsym 8105 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
 
Theoremeqlelt 8106 Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 < 𝐵)))
 
Theoremltle 8107 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
 
Theoremlelttr 8108 Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
 
Theoremltletr 8109 Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 25-Aug-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
 
Theoremltnsym2 8110 'Less than' is antisymmetric and irreflexive. (Contributed by NM, 13-Aug-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (𝐴 < 𝐵𝐵 < 𝐴))
 
Theoremeqle 8111 Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005.)
((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
 
Theoremltnri 8112 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
𝐴 ∈ ℝ        ¬ 𝐴 < 𝐴
 
Theoremeqlei 8113 Equality implies 'less than or equal to'. (Contributed by NM, 23-May-1999.) (Revised by Alexander van der Vekens, 20-Mar-2018.)
𝐴 ∈ ℝ       (𝐴 = 𝐵𝐴𝐵)
 
Theoremeqlei2 8114 Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018.)
𝐴 ∈ ℝ       (𝐵 = 𝐴𝐵𝐴)
 
Theoremgtneii 8115 'Less than' implies not equal. See also gtapii 8653 which is the same for apartness. (Contributed by Mario Carneiro, 30-Sep-2013.)
𝐴 ∈ ℝ    &   𝐴 < 𝐵       𝐵𝐴
 
Theoremltneii 8116 'Greater than' implies not equal. (Contributed by Mario Carneiro, 16-Sep-2015.)
𝐴 ∈ ℝ    &   𝐴 < 𝐵       𝐴𝐵
 
Theoremlttri3i 8117 Tightness of real apartness. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
 
Theoremletri3i 8118 Tightness of real apartness. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
 
Theoremltnsymi 8119 'Less than' is not symmetric. (Contributed by NM, 6-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)
 
Theoremlenlti 8120 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 24-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴)
 
Theoremltlei 8121 'Less than' implies 'less than or equal to'. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵𝐴𝐵)
 
Theoremltleii 8122 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐴 < 𝐵       𝐴𝐵
 
Theoremltnei 8123 'Less than' implies not equal. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵𝐵𝐴)
 
Theoremlttri 8124 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)
 
Theoremlelttri 8125 'Less than or equal to', 'less than' transitive law. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)
 
Theoremltletri 8126 'Less than', 'less than or equal to' transitive law. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)
 
Theoremletri 8127 'Less than or equal to' is transitive. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremle2tri3i 8128 Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))
 
Theoremmulgt0i 8129 The product of two positive numbers is positive. (Contributed by NM, 16-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))
 
Theoremmulgt0ii 8130 The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   0 < 𝐴    &   0 < 𝐵       0 < (𝐴 · 𝐵)
 
Theoremltnrd 8131 'Less than' is irreflexive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → ¬ 𝐴 < 𝐴)
 
Theoremgtned 8132 'Less than' implies not equal. See also gtapd 8656 which is the same but for apartness. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐵𝐴)
 
Theoremltned 8133 'Greater than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐴𝐵)
 
Theoremlttri3d 8134 Tightness of real apartness. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
 
Theoremletri3d 8135 Tightness of real apartness. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremeqleltd 8136 Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 < 𝐵)))
 
Theoremlenltd 8137 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
 
Theoremltled 8138 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐴𝐵)
 
Theoremltnsymd 8139 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → ¬ 𝐵 < 𝐴)
 
Theoremnltled 8140 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → ¬ 𝐵 < 𝐴)       (𝜑𝐴𝐵)
 
Theoremlensymd 8141 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → ¬ 𝐵 < 𝐴)
 
Theoremmulgt0d 8142 The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)    &   (𝜑 → 0 < 𝐵)       (𝜑 → 0 < (𝐴 · 𝐵))
 
Theoremletrd 8143 Transitive law deduction for 'less than or equal to'. (Contributed by NM, 20-May-2005.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremlelttrd 8144 Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 < 𝐶)       (𝜑𝐴 < 𝐶)
 
Theoremlttrd 8145 Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐵 < 𝐶)       (𝜑𝐴 < 𝐶)
 
Theorem0lt1 8146 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.)
0 < 1
 
Theoremltntri 8147 Negative trichotomy property for real numbers. It is well known that we cannot prove real number trichotomy, 𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴. Does that mean there is a pair of real numbers where none of those hold (that is, where we can refute each of those three relationships)? Actually, no, as shown here. This is another example of distinguishing between being unable to prove something, or being able to refute it. (Contributed by Jim Kingdon, 13-Aug-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴))
 
4.2.5  Initial properties of the complex numbers
 
Theoremmul12 8148 Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
 
Theoremmul32 8149 Commutative/associative law. (Contributed by NM, 8-Oct-1999.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵))
 
Theoremmul31 8150 Commutative/associative law. (Contributed by Scott Fenton, 3-Jan-2013.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴))
 
Theoremmul4 8151 Rearrangement of 4 factors. (Contributed by NM, 8-Oct-1999.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
 
Theoremmuladd11 8152 A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))))
 
Theorem1p1times 8153 Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
 
Theorempeano2cn 8154 A theorem for complex numbers analogous the second Peano postulate peano2 4627. (Contributed by NM, 17-Aug-2005.)
(𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
 
Theorempeano2re 8155 A theorem for reals analogous the second Peano postulate peano2 4627. (Contributed by NM, 5-Jul-2005.)
(𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
 
Theoremaddcom 8156 Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremaddrid 8157 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
(𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
 
Theoremaddlid 8158 0 is a left identity for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
 
Theoremreaddcan 8159 Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵))
 
Theorem00id 8160 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
(0 + 0) = 0
 
Theoremaddid1i 8161 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
𝐴 ∈ ℂ       (𝐴 + 0) = 𝐴
 
Theoremaddid2i 8162 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.)
𝐴 ∈ ℂ       (0 + 𝐴) = 𝐴
 
Theoremaddcomi 8163 Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 + 𝐵) = (𝐵 + 𝐴)
 
Theoremaddcomli 8164 Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   (𝐴 + 𝐵) = 𝐶       (𝐵 + 𝐴) = 𝐶
 
Theoremmul12i 8165 Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))
 
Theoremmul32i 8166 Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)
 
Theoremmul4i 8167 Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ       ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))
 
Theoremaddridd 8168 0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 + 0) = 𝐴)
 
Theoremaddlidd 8169 0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (0 + 𝐴) = 𝐴)
 
Theoremaddcomd 8170 Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremmul12d 8171 Commutative/associative law that swaps the first two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
 
Theoremmul32d 8172 Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵))
 
Theoremmul31d 8173 Commutative/associative law. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴))
 
Theoremmul4d 8174 Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
 
Theoremmuladd11r 8175 A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))
 
Theoremcomraddd 8176 Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.)
(𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐴 = (𝐵 + 𝐶))       (𝜑𝐴 = (𝐶 + 𝐵))
 
4.3  Real and complex numbers - basic operations
 
4.3.1  Addition
 
Theoremadd12 8177 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 11-May-2004.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)))
 
Theoremadd32 8178 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 13-Nov-1999.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
 
Theoremadd32r 8179 Commutative/associative law that swaps the last two terms in a triple sum, rearranging the parentheses. (Contributed by Paul Chapman, 18-May-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = ((𝐴 + 𝐶) + 𝐵))
 
Theoremadd4 8180 Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
 
Theoremadd42 8181 Rearrangement of 4 terms in a sum. (Contributed by NM, 12-May-2005.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)))
 
Theoremadd12i 8182 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 21-Jan-1997.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))
 
Theoremadd32i 8183 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 21-Jan-1997.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)
 
Theoremadd4i 8184 Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ       ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))
 
Theoremadd42i 8185 Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ       ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))
 
Theoremadd12d 8186 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)))
 
Theoremadd32d 8187 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
 
Theoremadd4d 8188 Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
 
Theoremadd42d 8189 Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)))
 
4.3.2  Subtraction
 
Syntaxcmin 8190 Extend class notation to include subtraction.
class
 
Syntaxcneg 8191 Extend class notation to include unary minus. The symbol - is not a class by itself but part of a compound class definition. We do this rather than making it a formal function since it is so commonly used. Note: We use different symbols for unary minus (-) and subtraction cmin 8190 () to prevent syntax ambiguity. For example, looking at the syntax definition co 5918, if we used the same symbol then "( − 𝐴𝐵) " could mean either "𝐴 " minus "𝐵", or it could represent the (meaningless) operation of classes " " and "𝐵 " connected with "operation" "𝐴". On the other hand, "(-𝐴𝐵) " is unambiguous.
class -𝐴
 
Definitiondf-sub 8192* Define subtraction. Theorem subval 8211 shows its value (and describes how this definition works), Theorem subaddi 8306 relates it to addition, and Theorems subcli 8295 and resubcli 8282 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
− = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
 
Definitiondf-neg 8193 Define the negative of a number (unary minus). We use different symbols for unary minus (-) and subtraction () to prevent syntax ambiguity. See cneg 8191 for a discussion of this. (Contributed by NM, 10-Feb-1995.)
-𝐴 = (0 − 𝐴)
 
Theoremcnegexlem1 8194 Addition cancellation of a real number from two complex numbers. Lemma for cnegex 8197. (Contributed by Eric Schmidt, 22-May-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
 
Theoremcnegexlem2 8195 Existence of a real number which produces a real number when multiplied by i. (Hint: zero is such a number, although we don't need to prove that yet). Lemma for cnegex 8197. (Contributed by Eric Schmidt, 22-May-2007.)
𝑦 ∈ ℝ (i · 𝑦) ∈ ℝ
 
Theoremcnegexlem3 8196* Existence of real number difference. Lemma for cnegex 8197. (Contributed by Eric Schmidt, 22-May-2007.)
((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ∃𝑐 ∈ ℝ (𝑏 + 𝑐) = 𝑦)
 
Theoremcnegex 8197* Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007.)
(𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
 
Theoremcnegex2 8198* Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
 
Theoremaddcan 8199 Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
 
Theoremaddcan2 8200 Cancellation law for addition. (Contributed by NM, 30-Jul-2004.) (Revised by Scott Fenton, 3-Jan-2013.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >