Theorem List for Intuitionistic Logic Explorer - 8101-8200 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | axsuploc 8101* |
An inhabited, bounded-above, located set of reals has a supremum. Axiom
for real and complex numbers, derived from ZF set theory. (This
restates ax-pre-suploc 8002 with ordering on the extended reals.)
(Contributed by Jim Kingdon, 30-Jan-2024.)
|
| ⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| |
| 4.2.4 Ordering on reals
|
| |
| Theorem | lttr 8102 |
Alias for axlttrn 8097, for naming consistency with lttri 8133. New proofs
should generally use this instead of ax-pre-lttrn 7995. (Contributed by NM,
10-Mar-2008.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| |
| Theorem | mulgt0 8103 |
The product of two positive numbers is positive. (Contributed by NM,
10-Mar-2008.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) |
| |
| Theorem | lenlt 8104 |
'Less than or equal to' expressed in terms of 'less than'. Part of
definition 11.2.7(vi) of [HoTT], p.
(varies). (Contributed by NM,
13-May-1999.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| |
| Theorem | ltnr 8105 |
'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
|
| ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) |
| |
| Theorem | ltso 8106 |
'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.)
|
| ⊢ < Or ℝ |
| |
| Theorem | gtso 8107 |
'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.)
|
| ⊢ ◡
< Or ℝ |
| |
| Theorem | lttri3 8108 |
Tightness of real apartness. (Contributed by NM, 5-May-1999.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
| |
| Theorem | letri3 8109 |
Tightness of real apartness. (Contributed by NM, 14-May-1999.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| |
| Theorem | ltleletr 8110 |
Transitive law, weaker form of (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶.
(Contributed by AV, 14-Oct-2018.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| |
| Theorem | letr 8111 |
Transitive law. (Contributed by NM, 12-Nov-1999.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| |
| Theorem | leid 8112 |
'Less than or equal to' is reflexive. (Contributed by NM,
18-Aug-1999.)
|
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) |
| |
| Theorem | ltne 8113 |
'Less than' implies not equal. See also ltap 8662
which is the same but for
apartness. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro,
16-Sep-2015.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) |
| |
| Theorem | ltnsym 8114 |
'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) |
| |
| Theorem | eqlelt 8115 |
Equality in terms of 'less than or equal to', 'less than'. (Contributed
by NM, 7-Apr-2001.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵))) |
| |
| Theorem | ltle 8116 |
'Less than' implies 'less than or equal to'. (Contributed by NM,
25-Aug-1999.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| |
| Theorem | lelttr 8117 |
Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies).
(Contributed by NM, 23-May-1999.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| |
| Theorem | ltletr 8118 |
Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies).
(Contributed by NM, 25-Aug-1999.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
| |
| Theorem | ltnsym2 8119 |
'Less than' is antisymmetric and irreflexive. (Contributed by NM,
13-Aug-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (𝐴 < 𝐵 ∧ 𝐵 < 𝐴)) |
| |
| Theorem | eqle 8120 |
Equality implies 'less than or equal to'. (Contributed by NM,
4-Apr-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) |
| |
| Theorem | ltnri 8121 |
'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ ¬ 𝐴 < 𝐴 |
| |
| Theorem | eqlei 8122 |
Equality implies 'less than or equal to'. (Contributed by NM,
23-May-1999.) (Revised by Alexander van der Vekens, 20-Mar-2018.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (𝐴 = 𝐵 → 𝐴 ≤ 𝐵) |
| |
| Theorem | eqlei2 8123 |
Equality implies 'less than or equal to'. (Contributed by Alexander van
der Vekens, 20-Mar-2018.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (𝐵 = 𝐴 → 𝐵 ≤ 𝐴) |
| |
| Theorem | gtneii 8124 |
'Less than' implies not equal. See also gtapii 8663 which is the same
for apartness. (Contributed by Mario Carneiro, 30-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐵 ≠ 𝐴 |
| |
| Theorem | ltneii 8125 |
'Greater than' implies not equal. (Contributed by Mario Carneiro,
16-Sep-2015.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐴 ≠ 𝐵 |
| |
| Theorem | lttri3i 8126 |
Tightness of real apartness. (Contributed by NM, 14-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)) |
| |
| Theorem | letri3i 8127 |
Tightness of real apartness. (Contributed by NM, 14-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)) |
| |
| Theorem | ltnsymi 8128 |
'Less than' is not symmetric. (Contributed by NM, 6-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴) |
| |
| Theorem | lenlti 8129 |
'Less than or equal to' in terms of 'less than'. (Contributed by NM,
24-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴) |
| |
| Theorem | ltlei 8130 |
'Less than' implies 'less than or equal to'. (Contributed by NM,
14-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 < 𝐵 → 𝐴 ≤ 𝐵) |
| |
| Theorem | ltleii 8131 |
'Less than' implies 'less than or equal to' (inference). (Contributed
by NM, 22-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐴 ≤ 𝐵 |
| |
| Theorem | ltnei 8132 |
'Less than' implies not equal. (Contributed by NM, 28-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 < 𝐵 → 𝐵 ≠ 𝐴) |
| |
| Theorem | lttri 8133 |
'Less than' is transitive. Theorem I.17 of [Apostol] p. 20.
(Contributed by NM, 14-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
| |
| Theorem | lelttri 8134 |
'Less than or equal to', 'less than' transitive law. (Contributed by
NM, 14-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
| |
| Theorem | ltletri 8135 |
'Less than', 'less than or equal to' transitive law. (Contributed by
NM, 14-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶) |
| |
| Theorem | letri 8136 |
'Less than or equal to' is transitive. (Contributed by NM,
14-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶) |
| |
| Theorem | le2tri3i 8137 |
Extended trichotomy law for 'less than or equal to'. (Contributed by
NM, 14-Aug-2000.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴)) |
| |
| Theorem | mulgt0i 8138 |
The product of two positive numbers is positive. (Contributed by NM,
16-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)) |
| |
| Theorem | mulgt0ii 8139 |
The product of two positive numbers is positive. (Contributed by NM,
18-May-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐴 & ⊢ 0 < 𝐵 ⇒ ⊢ 0 < (𝐴 · 𝐵) |
| |
| Theorem | ltnrd 8140 |
'Less than' is irreflexive. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → ¬ 𝐴 < 𝐴) |
| |
| Theorem | gtned 8141 |
'Less than' implies not equal. See also gtapd 8666 which is the same but
for apartness. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| |
| Theorem | ltned 8142 |
'Greater than' implies not equal. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| |
| Theorem | lttri3d 8143 |
Tightness of real apartness. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
| |
| Theorem | letri3d 8144 |
Tightness of real apartness. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| |
| Theorem | eqleltd 8145 |
Equality in terms of 'less than or equal to', 'less than'. (Contributed
by NM, 7-Apr-2001.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵))) |
| |
| Theorem | lenltd 8146 |
'Less than or equal to' in terms of 'less than'. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| |
| Theorem | ltled 8147 |
'Less than' implies 'less than or equal to'. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| |
| Theorem | ltnsymd 8148 |
'Less than' implies 'less than or equal to'. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| |
| Theorem | nltled 8149 |
'Not less than ' implies 'less than or equal to'. (Contributed by
Glauco Siliprandi, 11-Dec-2019.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ¬ 𝐵 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| |
| Theorem | lensymd 8150 |
'Less than or equal to' implies 'not less than'. (Contributed by
Glauco Siliprandi, 11-Dec-2019.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| |
| Theorem | mulgt0d 8151 |
The product of two positive numbers is positive. (Contributed by
Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
| |
| Theorem | letrd 8152 |
Transitive law deduction for 'less than or equal to'. (Contributed by
NM, 20-May-2005.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵)
& ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| |
| Theorem | lelttrd 8153 |
Transitive law deduction for 'less than or equal to', 'less than'.
(Contributed by NM, 8-Jan-2006.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵)
& ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) |
| |
| Theorem | lttrd 8154 |
Transitive law deduction for 'less than'. (Contributed by NM,
9-Jan-2006.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) |
| |
| Theorem | 0lt1 8155 |
0 is less than 1. Theorem I.21 of [Apostol] p.
20. Part of definition
11.2.7(vi) of [HoTT], p. (varies).
(Contributed by NM, 17-Jan-1997.)
|
| ⊢ 0 < 1 |
| |
| Theorem | ltntri 8156 |
Negative trichotomy property for real numbers. It is well known that we
cannot prove real number trichotomy, 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴. Does
that mean there is a pair of real numbers where none of those hold (that
is, where we can refute each of those three relationships)? Actually, no,
as shown here. This is another example of distinguishing between being
unable to prove something, or being able to refute it. (Contributed by
Jim Kingdon, 13-Aug-2023.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴)) |
| |
| 4.2.5 Initial properties of the complex
numbers
|
| |
| Theorem | mul12 8157 |
Commutative/associative law for multiplication. (Contributed by NM,
30-Apr-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) |
| |
| Theorem | mul32 8158 |
Commutative/associative law. (Contributed by NM, 8-Oct-1999.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
| |
| Theorem | mul31 8159 |
Commutative/associative law. (Contributed by Scott Fenton,
3-Jan-2013.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴)) |
| |
| Theorem | mul4 8160 |
Rearrangement of 4 factors. (Contributed by NM, 8-Oct-1999.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
| |
| Theorem | muladd11 8161 |
A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵)))) |
| |
| Theorem | 1p1times 8162 |
Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝐴 ∈ ℂ → ((1 + 1) ·
𝐴) = (𝐴 + 𝐴)) |
| |
| Theorem | peano2cn 8163 |
A theorem for complex numbers analogous the second Peano postulate
peano2 4632. (Contributed by NM, 17-Aug-2005.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| |
| Theorem | peano2re 8164 |
A theorem for reals analogous the second Peano postulate peano2 4632.
(Contributed by NM, 5-Jul-2005.)
|
| ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
| |
| Theorem | addcom 8165 |
Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| |
| Theorem | addrid 8166 |
0 is an additive identity. (Contributed by Jim
Kingdon,
16-Jan-2020.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| |
| Theorem | addlid 8167 |
0 is a left identity for addition. (Contributed by
Scott Fenton,
3-Jan-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
| |
| Theorem | readdcan 8168 |
Cancellation law for addition over the reals. (Contributed by Scott
Fenton, 3-Jan-2013.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | 00id 8169 |
0 is its own additive identity. (Contributed by Scott
Fenton,
3-Jan-2013.)
|
| ⊢ (0 + 0) = 0 |
| |
| Theorem | addridi 8170 |
0 is an additive identity. (Contributed by NM,
23-Nov-1994.)
(Revised by Scott Fenton, 3-Jan-2013.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 + 0) = 𝐴 |
| |
| Theorem | addlidi 8171 |
0 is a left identity for addition. (Contributed by NM,
3-Jan-2013.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (0 + 𝐴) = 𝐴 |
| |
| Theorem | addcomi 8172 |
Addition commutes. Based on ideas by Eric Schmidt. (Contributed by
Scott Fenton, 3-Jan-2013.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) |
| |
| Theorem | addcomli 8173 |
Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 + 𝐵) = 𝐶 ⇒ ⊢ (𝐵 + 𝐴) = 𝐶 |
| |
| Theorem | mul12i 8174 |
Commutative/associative law that swaps the first two factors in a triple
product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew
Salmon, 19-Nov-2011.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)) |
| |
| Theorem | mul32i 8175 |
Commutative/associative law that swaps the last two factors in a triple
product. (Contributed by NM, 11-May-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵) |
| |
| Theorem | mul4i 8176 |
Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)) |
| |
| Theorem | addridd 8177 |
0 is an additive identity. (Contributed by Mario
Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| |
| Theorem | addlidd 8178 |
0 is a left identity for addition. (Contributed by
Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
| |
| Theorem | addcomd 8179 |
Addition commutes. Based on ideas by Eric Schmidt. (Contributed by
Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| |
| Theorem | mul12d 8180 |
Commutative/associative law that swaps the first two factors in a triple
product. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) |
| |
| Theorem | mul32d 8181 |
Commutative/associative law that swaps the last two factors in a triple
product. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
| |
| Theorem | mul31d 8182 |
Commutative/associative law. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴)) |
| |
| Theorem | mul4d 8183 |
Rearrangement of 4 factors. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
| |
| Theorem | muladd11r 8184 |
A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1)) |
| |
| Theorem | comraddd 8185 |
Commute RHS addition, in deduction form. (Contributed by David A.
Wheeler, 11-Oct-2018.)
|
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
| |
| 4.3 Real and complex numbers - basic
operations
|
| |
| 4.3.1 Addition
|
| |
| Theorem | add12 8186 |
Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by NM, 11-May-2004.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))) |
| |
| Theorem | add32 8187 |
Commutative/associative law that swaps the last two terms in a triple sum.
(Contributed by NM, 13-Nov-1999.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) |
| |
| Theorem | add32r 8188 |
Commutative/associative law that swaps the last two terms in a triple sum,
rearranging the parentheses. (Contributed by Paul Chapman,
18-May-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = ((𝐴 + 𝐶) + 𝐵)) |
| |
| Theorem | add4 8189 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.)
(Proof shortened by Andrew Salmon, 22-Oct-2011.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) |
| |
| Theorem | add42 8190 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 12-May-2005.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))) |
| |
| Theorem | add12i 8191 |
Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by NM, 21-Jan-1997.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)) |
| |
| Theorem | add32i 8192 |
Commutative/associative law that swaps the last two terms in a triple
sum. (Contributed by NM, 21-Jan-1997.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵) |
| |
| Theorem | add4i 8193 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)) |
| |
| Theorem | add42i 8194 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) |
| |
| Theorem | add12d 8195 |
Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))) |
| |
| Theorem | add32d 8196 |
Commutative/associative law that swaps the last two terms in a triple
sum. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) |
| |
| Theorem | add4d 8197 |
Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) |
| |
| Theorem | add42d 8198 |
Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))) |
| |
| 4.3.2 Subtraction
|
| |
| Syntax | cmin 8199 |
Extend class notation to include subtraction.
|
| class − |
| |
| Syntax | cneg 8200 |
Extend class notation to include unary minus. The symbol - is not a
class by itself but part of a compound class definition. We do this
rather than making it a formal function since it is so commonly used.
Note: We use different symbols for unary minus (-) and subtraction
cmin 8199 (−) to prevent
syntax ambiguity. For example, looking at the
syntax definition co 5923, if we used the same symbol
then "( − 𝐴 − 𝐵) " could mean either
"− 𝐴 " minus "𝐵",
or
it could represent the (meaningless) operation of
classes "− " and "− 𝐵
" connected with "operation" "𝐴".
On the other hand, "(-𝐴 − 𝐵) " is unambiguous.
|
| class -𝐴 |