Theorem List for Intuitionistic Logic Explorer - 8101-8200 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | ltleletr 8101 |
Transitive law, weaker form of (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶.
(Contributed by AV, 14-Oct-2018.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
|
Theorem | letr 8102 |
Transitive law. (Contributed by NM, 12-Nov-1999.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
|
Theorem | leid 8103 |
'Less than or equal to' is reflexive. (Contributed by NM,
18-Aug-1999.)
|
⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) |
|
Theorem | ltne 8104 |
'Less than' implies not equal. See also ltap 8652
which is the same but for
apartness. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro,
16-Sep-2015.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) |
|
Theorem | ltnsym 8105 |
'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) |
|
Theorem | eqlelt 8106 |
Equality in terms of 'less than or equal to', 'less than'. (Contributed
by NM, 7-Apr-2001.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵))) |
|
Theorem | ltle 8107 |
'Less than' implies 'less than or equal to'. (Contributed by NM,
25-Aug-1999.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
|
Theorem | lelttr 8108 |
Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies).
(Contributed by NM, 23-May-1999.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
|
Theorem | ltletr 8109 |
Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies).
(Contributed by NM, 25-Aug-1999.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
|
Theorem | ltnsym2 8110 |
'Less than' is antisymmetric and irreflexive. (Contributed by NM,
13-Aug-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (𝐴 < 𝐵 ∧ 𝐵 < 𝐴)) |
|
Theorem | eqle 8111 |
Equality implies 'less than or equal to'. (Contributed by NM,
4-Apr-2005.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) |
|
Theorem | ltnri 8112 |
'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ ¬ 𝐴 < 𝐴 |
|
Theorem | eqlei 8113 |
Equality implies 'less than or equal to'. (Contributed by NM,
23-May-1999.) (Revised by Alexander van der Vekens, 20-Mar-2018.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ (𝐴 = 𝐵 → 𝐴 ≤ 𝐵) |
|
Theorem | eqlei2 8114 |
Equality implies 'less than or equal to'. (Contributed by Alexander van
der Vekens, 20-Mar-2018.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ (𝐵 = 𝐴 → 𝐵 ≤ 𝐴) |
|
Theorem | gtneii 8115 |
'Less than' implies not equal. See also gtapii 8653 which is the same
for apartness. (Contributed by Mario Carneiro, 30-Sep-2013.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐵 ≠ 𝐴 |
|
Theorem | ltneii 8116 |
'Greater than' implies not equal. (Contributed by Mario Carneiro,
16-Sep-2015.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐴 ≠ 𝐵 |
|
Theorem | lttri3i 8117 |
Tightness of real apartness. (Contributed by NM, 14-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)) |
|
Theorem | letri3i 8118 |
Tightness of real apartness. (Contributed by NM, 14-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)) |
|
Theorem | ltnsymi 8119 |
'Less than' is not symmetric. (Contributed by NM, 6-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴) |
|
Theorem | lenlti 8120 |
'Less than or equal to' in terms of 'less than'. (Contributed by NM,
24-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴) |
|
Theorem | ltlei 8121 |
'Less than' implies 'less than or equal to'. (Contributed by NM,
14-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 < 𝐵 → 𝐴 ≤ 𝐵) |
|
Theorem | ltleii 8122 |
'Less than' implies 'less than or equal to' (inference). (Contributed
by NM, 22-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐴 ≤ 𝐵 |
|
Theorem | ltnei 8123 |
'Less than' implies not equal. (Contributed by NM, 28-Jul-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 < 𝐵 → 𝐵 ≠ 𝐴) |
|
Theorem | lttri 8124 |
'Less than' is transitive. Theorem I.17 of [Apostol] p. 20.
(Contributed by NM, 14-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
|
Theorem | lelttri 8125 |
'Less than or equal to', 'less than' transitive law. (Contributed by
NM, 14-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
|
Theorem | ltletri 8126 |
'Less than', 'less than or equal to' transitive law. (Contributed by
NM, 14-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶) |
|
Theorem | letri 8127 |
'Less than or equal to' is transitive. (Contributed by NM,
14-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶) |
|
Theorem | le2tri3i 8128 |
Extended trichotomy law for 'less than or equal to'. (Contributed by
NM, 14-Aug-2000.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈
ℝ ⇒ ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴)) |
|
Theorem | mulgt0i 8129 |
The product of two positive numbers is positive. (Contributed by NM,
16-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)) |
|
Theorem | mulgt0ii 8130 |
The product of two positive numbers is positive. (Contributed by NM,
18-May-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐴 & ⊢ 0 < 𝐵 ⇒ ⊢ 0 < (𝐴 · 𝐵) |
|
Theorem | ltnrd 8131 |
'Less than' is irreflexive. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → ¬ 𝐴 < 𝐴) |
|
Theorem | gtned 8132 |
'Less than' implies not equal. See also gtapd 8656 which is the same but
for apartness. (Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
|
Theorem | ltned 8133 |
'Greater than' implies not equal. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
|
Theorem | lttri3d 8134 |
Tightness of real apartness. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
|
Theorem | letri3d 8135 |
Tightness of real apartness. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
|
Theorem | eqleltd 8136 |
Equality in terms of 'less than or equal to', 'less than'. (Contributed
by NM, 7-Apr-2001.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵))) |
|
Theorem | lenltd 8137 |
'Less than or equal to' in terms of 'less than'. (Contributed by Mario
Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
|
Theorem | ltled 8138 |
'Less than' implies 'less than or equal to'. (Contributed by Mario
Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
|
Theorem | ltnsymd 8139 |
'Less than' implies 'less than or equal to'. (Contributed by Mario
Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
|
Theorem | nltled 8140 |
'Not less than ' implies 'less than or equal to'. (Contributed by
Glauco Siliprandi, 11-Dec-2019.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ¬ 𝐵 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
|
Theorem | lensymd 8141 |
'Less than or equal to' implies 'not less than'. (Contributed by
Glauco Siliprandi, 11-Dec-2019.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
|
Theorem | mulgt0d 8142 |
The product of two positive numbers is positive. (Contributed by
Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
|
Theorem | letrd 8143 |
Transitive law deduction for 'less than or equal to'. (Contributed by
NM, 20-May-2005.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵)
& ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
|
Theorem | lelttrd 8144 |
Transitive law deduction for 'less than or equal to', 'less than'.
(Contributed by NM, 8-Jan-2006.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵)
& ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) |
|
Theorem | lttrd 8145 |
Transitive law deduction for 'less than'. (Contributed by NM,
9-Jan-2006.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) |
|
Theorem | 0lt1 8146 |
0 is less than 1. Theorem I.21 of [Apostol] p.
20. Part of definition
11.2.7(vi) of [HoTT], p. (varies).
(Contributed by NM, 17-Jan-1997.)
|
⊢ 0 < 1 |
|
Theorem | ltntri 8147 |
Negative trichotomy property for real numbers. It is well known that we
cannot prove real number trichotomy, 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴. Does
that mean there is a pair of real numbers where none of those hold (that
is, where we can refute each of those three relationships)? Actually, no,
as shown here. This is another example of distinguishing between being
unable to prove something, or being able to refute it. (Contributed by
Jim Kingdon, 13-Aug-2023.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴)) |
|
4.2.5 Initial properties of the complex
numbers
|
|
Theorem | mul12 8148 |
Commutative/associative law for multiplication. (Contributed by NM,
30-Apr-2005.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) |
|
Theorem | mul32 8149 |
Commutative/associative law. (Contributed by NM, 8-Oct-1999.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
|
Theorem | mul31 8150 |
Commutative/associative law. (Contributed by Scott Fenton,
3-Jan-2013.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴)) |
|
Theorem | mul4 8151 |
Rearrangement of 4 factors. (Contributed by NM, 8-Oct-1999.)
|
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
|
Theorem | muladd11 8152 |
A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵)))) |
|
Theorem | 1p1times 8153 |
Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario
Carneiro, 27-May-2016.)
|
⊢ (𝐴 ∈ ℂ → ((1 + 1) ·
𝐴) = (𝐴 + 𝐴)) |
|
Theorem | peano2cn 8154 |
A theorem for complex numbers analogous the second Peano postulate
peano2 4627. (Contributed by NM, 17-Aug-2005.)
|
⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
|
Theorem | peano2re 8155 |
A theorem for reals analogous the second Peano postulate peano2 4627.
(Contributed by NM, 5-Jul-2005.)
|
⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
|
Theorem | addcom 8156 |
Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
|
Theorem | addrid 8157 |
0 is an additive identity. (Contributed by Jim
Kingdon,
16-Jan-2020.)
|
⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
|
Theorem | addlid 8158 |
0 is a left identity for addition. (Contributed by
Scott Fenton,
3-Jan-2013.)
|
⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
|
Theorem | readdcan 8159 |
Cancellation law for addition over the reals. (Contributed by Scott
Fenton, 3-Jan-2013.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵)) |
|
Theorem | 00id 8160 |
0 is its own additive identity. (Contributed by Scott
Fenton,
3-Jan-2013.)
|
⊢ (0 + 0) = 0 |
|
Theorem | addid1i 8161 |
0 is an additive identity. (Contributed by NM,
23-Nov-1994.)
(Revised by Scott Fenton, 3-Jan-2013.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 + 0) = 𝐴 |
|
Theorem | addid2i 8162 |
0 is a left identity for addition. (Contributed by NM,
3-Jan-2013.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ (0 + 𝐴) = 𝐴 |
|
Theorem | addcomi 8163 |
Addition commutes. Based on ideas by Eric Schmidt. (Contributed by
Scott Fenton, 3-Jan-2013.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) |
|
Theorem | addcomli 8164 |
Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 + 𝐵) = 𝐶 ⇒ ⊢ (𝐵 + 𝐴) = 𝐶 |
|
Theorem | mul12i 8165 |
Commutative/associative law that swaps the first two factors in a triple
product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew
Salmon, 19-Nov-2011.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)) |
|
Theorem | mul32i 8166 |
Commutative/associative law that swaps the last two factors in a triple
product. (Contributed by NM, 11-May-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵) |
|
Theorem | mul4i 8167 |
Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)) |
|
Theorem | addridd 8168 |
0 is an additive identity. (Contributed by Mario
Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
|
Theorem | addlidd 8169 |
0 is a left identity for addition. (Contributed by
Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
|
Theorem | addcomd 8170 |
Addition commutes. Based on ideas by Eric Schmidt. (Contributed by
Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
|
Theorem | mul12d 8171 |
Commutative/associative law that swaps the first two factors in a triple
product. (Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) |
|
Theorem | mul32d 8172 |
Commutative/associative law that swaps the last two factors in a triple
product. (Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
|
Theorem | mul31d 8173 |
Commutative/associative law. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴)) |
|
Theorem | mul4d 8174 |
Rearrangement of 4 factors. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
|
Theorem | muladd11r 8175 |
A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1)) |
|
Theorem | comraddd 8176 |
Commute RHS addition, in deduction form. (Contributed by David A.
Wheeler, 11-Oct-2018.)
|
⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
|
4.3 Real and complex numbers - basic
operations
|
|
4.3.1 Addition
|
|
Theorem | add12 8177 |
Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by NM, 11-May-2004.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))) |
|
Theorem | add32 8178 |
Commutative/associative law that swaps the last two terms in a triple sum.
(Contributed by NM, 13-Nov-1999.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) |
|
Theorem | add32r 8179 |
Commutative/associative law that swaps the last two terms in a triple sum,
rearranging the parentheses. (Contributed by Paul Chapman,
18-May-2007.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = ((𝐴 + 𝐶) + 𝐵)) |
|
Theorem | add4 8180 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.)
(Proof shortened by Andrew Salmon, 22-Oct-2011.)
|
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) |
|
Theorem | add42 8181 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 12-May-2005.)
|
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))) |
|
Theorem | add12i 8182 |
Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by NM, 21-Jan-1997.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)) |
|
Theorem | add32i 8183 |
Commutative/associative law that swaps the last two terms in a triple
sum. (Contributed by NM, 21-Jan-1997.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵) |
|
Theorem | add4i 8184 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)) |
|
Theorem | add42i 8185 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) |
|
Theorem | add12d 8186 |
Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))) |
|
Theorem | add32d 8187 |
Commutative/associative law that swaps the last two terms in a triple
sum. (Contributed by Mario Carneiro, 27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) |
|
Theorem | add4d 8188 |
Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) |
|
Theorem | add42d 8189 |
Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro,
27-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))) |
|
4.3.2 Subtraction
|
|
Syntax | cmin 8190 |
Extend class notation to include subtraction.
|
class − |
|
Syntax | cneg 8191 |
Extend class notation to include unary minus. The symbol - is not a
class by itself but part of a compound class definition. We do this
rather than making it a formal function since it is so commonly used.
Note: We use different symbols for unary minus (-) and subtraction
cmin 8190 (−) to prevent
syntax ambiguity. For example, looking at the
syntax definition co 5918, if we used the same symbol
then "( − 𝐴 − 𝐵) " could mean either
"− 𝐴 " minus "𝐵",
or
it could represent the (meaningless) operation of
classes "− " and "− 𝐵
" connected with "operation" "𝐴".
On the other hand, "(-𝐴 − 𝐵) " is unambiguous.
|
class -𝐴 |
|
Definition | df-sub 8192* |
Define subtraction. Theorem subval 8211 shows its value (and describes how
this definition works), Theorem subaddi 8306 relates it to addition, and
Theorems subcli 8295 and resubcli 8282 prove its closure laws. (Contributed
by NM, 26-Nov-1994.)
|
⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
|
Definition | df-neg 8193 |
Define the negative of a number (unary minus). We use different symbols
for unary minus (-) and subtraction (−) to prevent syntax
ambiguity. See cneg 8191 for a discussion of this. (Contributed by
NM,
10-Feb-1995.)
|
⊢ -𝐴 = (0 − 𝐴) |
|
Theorem | cnegexlem1 8194 |
Addition cancellation of a real number from two complex numbers. Lemma
for cnegex 8197. (Contributed by Eric Schmidt, 22-May-2007.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
|
Theorem | cnegexlem2 8195 |
Existence of a real number which produces a real number when multiplied
by i. (Hint: zero is such a number, although we
don't need to
prove that yet). Lemma for cnegex 8197. (Contributed by Eric Schmidt,
22-May-2007.)
|
⊢ ∃𝑦 ∈ ℝ (i · 𝑦) ∈
ℝ |
|
Theorem | cnegexlem3 8196* |
Existence of real number difference. Lemma for cnegex 8197. (Contributed
by Eric Schmidt, 22-May-2007.)
|
⊢ ((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ∃𝑐 ∈ ℝ (𝑏 + 𝑐) = 𝑦) |
|
Theorem | cnegex 8197* |
Existence of the negative of a complex number. (Contributed by Eric
Schmidt, 21-May-2007.)
|
⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) |
|
Theorem | cnegex2 8198* |
Existence of a left inverse for addition. (Contributed by Scott Fenton,
3-Jan-2013.)
|
⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) |
|
Theorem | addcan 8199 |
Cancellation law for addition. Theorem I.1 of [Apostol] p. 18.
(Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro,
27-May-2016.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
|
Theorem | addcan2 8200 |
Cancellation law for addition. (Contributed by NM, 30-Jul-2004.)
(Revised by Scott Fenton, 3-Jan-2013.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |