| Intuitionistic Logic Explorer Theorem List (p. 82 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Axiom | ax-1re 8101 | 1 is a real number. Axiom for real and complex numbers, justified by Theorem ax1re 8057. Proofs should use 1re 8153 instead. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.) |
| ⊢ 1 ∈ ℝ | ||
| Axiom | ax-icn 8102 | i is a complex number. Axiom for real and complex numbers, justified by Theorem axicn 8058. (Contributed by NM, 1-Mar-1995.) |
| ⊢ i ∈ ℂ | ||
| Axiom | ax-addcl 8103 | Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 8059. Proofs should normally use addcl 8132 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
| Axiom | ax-addrcl 8104 | Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 8060. Proofs should normally use readdcl 8133 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Axiom | ax-mulcl 8105 | Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 8061. Proofs should normally use mulcl 8134 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
| Axiom | ax-mulrcl 8106 | Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 8062. Proofs should normally use remulcl 8135 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
| Axiom | ax-addcom 8107 | Addition commutes. Axiom for real and complex numbers, justified by Theorem axaddcom 8065. Proofs should normally use addcom 8291 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 17-Jan-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Axiom | ax-mulcom 8108 | Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 8066. Proofs should normally use mulcom 8136 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Axiom | ax-addass 8109 | Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 8067. Proofs should normally use addass 8137 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Axiom | ax-mulass 8110 | Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 8068. Proofs should normally use mulass 8138 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Axiom | ax-distr 8111 | Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, justified by Theorem axdistr 8069. Proofs should normally use adddi 8139 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Axiom | ax-i2m1 8112 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by Theorem axi2m1 8070. (Contributed by NM, 29-Jan-1995.) |
| ⊢ ((i · i) + 1) = 0 | ||
| Axiom | ax-0lt1 8113 | 0 is less than 1. Axiom for real and complex numbers, justified by Theorem ax0lt1 8071. Proofs should normally use 0lt1 8281 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 12-Jan-2020.) |
| ⊢ 0 <ℝ 1 | ||
| Axiom | ax-1rid 8114 | 1 is an identity element for real multiplication. Axiom for real and complex numbers, justified by Theorem ax1rid 8072. (Contributed by NM, 29-Jan-1995.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | ||
| Axiom | ax-0id 8115 |
0 is an identity element for real addition. Axiom for
real and
complex numbers, justified by Theorem ax0id 8073.
Proofs should normally use addrid 8292 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 16-Jan-2020.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | ||
| Axiom | ax-rnegex 8116* | Existence of negative of real number. Axiom for real and complex numbers, justified by Theorem axrnegex 8074. (Contributed by Eric Schmidt, 21-May-2007.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
| Axiom | ax-precex 8117* | Existence of reciprocal of positive real number. Axiom for real and complex numbers, justified by Theorem axprecex 8075. (Contributed by Jim Kingdon, 6-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) → ∃𝑥 ∈ ℝ (0 <ℝ 𝑥 ∧ (𝐴 · 𝑥) = 1)) | ||
| Axiom | ax-cnre 8118* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, justified by Theorem axcnre 8076. For naming consistency, use cnre 8150 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Axiom | ax-pre-ltirr 8119 | Real number less-than is irreflexive. Axiom for real and complex numbers, justified by Theorem ax-pre-ltirr 8119. (Contributed by Jim Kingdon, 12-Jan-2020.) |
| ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) | ||
| Axiom | ax-pre-ltwlin 8120 | Real number less-than is weakly linear. Axiom for real and complex numbers, justified by Theorem axpre-ltwlin 8078. (Contributed by Jim Kingdon, 12-Jan-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) | ||
| Axiom | ax-pre-lttrn 8121 | Ordering on reals is transitive. Axiom for real and complex numbers, justified by Theorem axpre-lttrn 8079. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
| Axiom | ax-pre-apti 8122 | Apartness of reals is tight. Axiom for real and complex numbers, justified by Theorem axpre-apti 8080. (Contributed by Jim Kingdon, 29-Jan-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) | ||
| Axiom | ax-pre-ltadd 8123 | Ordering property of addition on reals. Axiom for real and complex numbers, justified by Theorem axpre-ltadd 8081. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
| Axiom | ax-pre-mulgt0 8124 | The product of two positive reals is positive. Axiom for real and complex numbers, justified by Theorem axpre-mulgt0 8082. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
| Axiom | ax-pre-mulext 8125 |
Strong extensionality of multiplication (expressed in terms of <ℝ).
Axiom for real and complex numbers, justified by Theorem axpre-mulext 8083
(Contributed by Jim Kingdon, 18-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) → (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
| Axiom | ax-arch 8126* |
Archimedean axiom. Definition 3.1(2) of [Geuvers], p. 9. Axiom for
real and complex numbers, justified by Theorem axarch 8086.
This axiom should not be used directly; instead use arch 9374 (which is the same, but stated in terms of ℕ and <). (Contributed by Jim Kingdon, 2-May-2020.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) | ||
| Axiom | ax-caucvg 8127* |
Completeness. Axiom for real and complex numbers, justified by Theorem
axcaucvg 8095.
A Cauchy sequence (as defined here, which has a rate convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term. This axiom should not be used directly; instead use caucvgre 11500 (which is the same, but stated in terms of the ℕ and 1 / 𝑛 notations). (Contributed by Jim Kingdon, 19-Jul-2021.) (New usage is discouraged.) |
| ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) | ||
| Axiom | ax-pre-suploc 8128* |
An inhabited, bounded-above, located set of reals has a supremum.
Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound. Although this and ax-caucvg 8127 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 8127. (Contributed by Jim Kingdon, 23-Jan-2024.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
| Axiom | ax-addf 8129 |
Addition is an operation on the complex numbers. This deprecated axiom is
provided for historical compatibility but is not a bona fide axiom for
complex numbers (independent of set theory) since it cannot be interpreted
as a first- or second-order statement (see
https://us.metamath.org/downloads/schmidt-cnaxioms.pdf).
It may be
deleted in the future and should be avoided for new theorems. Instead,
the less specific addcl 8132 should be used. Note that uses of ax-addf 8129 can
be eliminated by using the defined operation
(𝑥
∈ ℂ, 𝑦 ∈
ℂ ↦ (𝑥 + 𝑦)) in place of +, from which
this axiom (with the defined operation in place of +) follows as a
theorem.
This axiom is justified by Theorem axaddf 8063. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
| ⊢ + :(ℂ × ℂ)⟶ℂ | ||
| Axiom | ax-mulf 8130 |
Multiplication is an operation on the complex numbers. This axiom tells
us that · is defined only on complex
numbers which is analogous to
the way that other operations are defined, for example see subf 8356
or
eff 12182. However, while Metamath can handle this
axiom, if we wish to work
with weaker complex number axioms, we can avoid it by using the less
specific mulcl 8134. Note that uses of ax-mulf 8130 can be eliminated by using
the defined operation (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) in place of
·, as seen in mpomulf 8144.
This axiom is justified by Theorem axmulf 8064. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
| ⊢ · :(ℂ × ℂ)⟶ℂ | ||
| Theorem | cnex 8131 | Alias for ax-cnex 8098. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℂ ∈ V | ||
| Theorem | addcl 8132 | Alias for ax-addcl 8103, for naming consistency with addcli 8158. Use this theorem instead of ax-addcl 8103 or axaddcl 8059. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
| Theorem | readdcl 8133 | Alias for ax-addrcl 8104, for naming consistency with readdcli 8167. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | mulcl 8134 | Alias for ax-mulcl 8105, for naming consistency with mulcli 8159. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
| Theorem | remulcl 8135 | Alias for ax-mulrcl 8106, for naming consistency with remulcli 8168. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
| Theorem | mulcom 8136 | Alias for ax-mulcom 8108, for naming consistency with mulcomi 8160. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | addass 8137 | Alias for ax-addass 8109, for naming consistency with addassi 8162. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | mulass 8138 | Alias for ax-mulass 8110, for naming consistency with mulassi 8163. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Theorem | adddi 8139 | Alias for ax-distr 8111, for naming consistency with adddii 8164. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Theorem | recn 8140 | A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | ||
| Theorem | reex 8141 | The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℝ ∈ V | ||
| Theorem | reelprrecn 8142 | Reals are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ ℝ ∈ {ℝ, ℂ} | ||
| Theorem | cnelprrecn 8143 | Complex numbers are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ ℂ ∈ {ℝ, ℂ} | ||
| Theorem | mpomulf 8144* | Multiplication is an operation on complex numbers. Version of ax-mulf 8130 using maps-to notation, proved from the axioms of set theory and ax-mulcl 8105. (Contributed by GG, 16-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ | ||
| Theorem | adddir 8145 | Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | ||
| Theorem | 0cn 8146 | 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
| ⊢ 0 ∈ ℂ | ||
| Theorem | 0cnd 8147 | 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (𝜑 → 0 ∈ ℂ) | ||
| Theorem | c0ex 8148 | 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 0 ∈ V | ||
| Theorem | 1ex 8149 | 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 1 ∈ V | ||
| Theorem | cnre 8150* | Alias for ax-cnre 8118, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | mulrid 8151 | 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | ||
| Theorem | mullid 8152 | Identity law for multiplication. Note: see mulrid 8151 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | ||
| Theorem | 1re 8153 | 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.) |
| ⊢ 1 ∈ ℝ | ||
| Theorem | 0re 8154 | 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ 0 ∈ ℝ | ||
| Theorem | 0red 8155 | 0 is a real number, deductive form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 0 ∈ ℝ) | ||
| Theorem | mulridi 8156 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · 1) = 𝐴 | ||
| Theorem | mullidi 8157 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (1 · 𝐴) = 𝐴 | ||
| Theorem | addcli 8158 | Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + 𝐵) ∈ ℂ | ||
| Theorem | mulcli 8159 | Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℂ | ||
| Theorem | mulcomi 8160 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) | ||
| Theorem | mulcomli 8161 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 · 𝐵) = 𝐶 ⇒ ⊢ (𝐵 · 𝐴) = 𝐶 | ||
| Theorem | addassi 8162 | Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) | ||
| Theorem | mulassi 8163 | Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) | ||
| Theorem | adddii 8164 | Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) | ||
| Theorem | adddiri 8165 | Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)) | ||
| Theorem | recni 8166 | A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ∈ ℂ | ||
| Theorem | readdcli 8167 | Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 + 𝐵) ∈ ℝ | ||
| Theorem | remulcli 8168 | Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℝ | ||
| Theorem | 1red 8169 | 1 is an real number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 1 ∈ ℝ) | ||
| Theorem | 1cnd 8170 | 1 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 1 ∈ ℂ) | ||
| Theorem | mulridd 8171 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 1) = 𝐴) | ||
| Theorem | mullidd 8172 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (1 · 𝐴) = 𝐴) | ||
| Theorem | mulid2d 8173 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (1 · 𝐴) = 𝐴) | ||
| Theorem | addcld 8174 | Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) | ||
| Theorem | mulcld 8175 | Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) | ||
| Theorem | mulcomd 8176 | Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | addassd 8177 | Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | mulassd 8178 | Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Theorem | adddid 8179 | Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Theorem | adddird 8180 | Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | ||
| Theorem | adddirp1d 8181 | Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) | ||
| Theorem | joinlmuladdmuld 8182 | Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) | ||
| Theorem | recnd 8183 | Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
| Theorem | readdcld 8184 | Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | remulcld 8185 | Closure law for multiplication of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) | ||
| Syntax | cpnf 8186 | Plus infinity. |
| class +∞ | ||
| Syntax | cmnf 8187 | Minus infinity. |
| class -∞ | ||
| Syntax | cxr 8188 | The set of extended reals (includes plus and minus infinity). |
| class ℝ* | ||
| Syntax | clt 8189 | 'Less than' predicate (extended to include the extended reals). |
| class < | ||
| Syntax | cle 8190 | Extend wff notation to include the 'less than or equal to' relation. |
| class ≤ | ||
| Definition | df-pnf 8191 |
Define plus infinity. Note that the definition is arbitrary, requiring
only that +∞ be a set not in ℝ and different from -∞
(df-mnf 8192). We use 𝒫 ∪ ℂ to make it independent of the
construction of ℂ, and Cantor's Theorem will
show that it is
different from any member of ℂ and therefore
ℝ. See pnfnre 8196
and mnfnre 8197, and we'll also be able to prove +∞ ≠ -∞.
A simpler possibility is to define +∞ as ℂ and -∞ as {ℂ}, but that approach requires the Axiom of Regularity to show that +∞ and -∞ are different from each other and from all members of ℝ. (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.) |
| ⊢ +∞ = 𝒫 ∪ ℂ | ||
| Definition | df-mnf 8192 | Define minus infinity as the power set of plus infinity. Note that the definition is arbitrary, requiring only that -∞ be a set not in ℝ and different from +∞ (see mnfnre 8197). (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.) |
| ⊢ -∞ = 𝒫 +∞ | ||
| Definition | df-xr 8193 | Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | ||
| Definition | df-ltxr 8194* | Define 'less than' on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. Note that in our postulates for complex numbers, <ℝ is primitive and not necessarily a relation on ℝ. (Contributed by NM, 13-Oct-2005.) |
| ⊢ < = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))) | ||
| Definition | df-le 8195 | Define 'less than or equal to' on the extended real subset of complex numbers. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | ||
| Theorem | pnfnre 8196 | Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| ⊢ +∞ ∉ ℝ | ||
| Theorem | mnfnre 8197 | Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| ⊢ -∞ ∉ ℝ | ||
| Theorem | ressxr 8198 | The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.) |
| ⊢ ℝ ⊆ ℝ* | ||
| Theorem | rexpssxrxp 8199 | The Cartesian product of standard reals are a subset of the Cartesian product of extended reals (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | ||
| Theorem | rexr 8200 | A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |