HomeHome Intuitionistic Logic Explorer
Theorem List (p. 82 of 158)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8101-8200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaxsuploc 8101* An inhabited, bounded-above, located set of reals has a supremum. Axiom for real and complex numbers, derived from ZF set theory. (This restates ax-pre-suploc 8002 with ordering on the extended reals.) (Contributed by Jim Kingdon, 30-Jan-2024.)
(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
4.2.4  Ordering on reals
 
Theoremlttr 8102 Alias for axlttrn 8097, for naming consistency with lttri 8133. New proofs should generally use this instead of ax-pre-lttrn 7995. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
 
Theoremmulgt0 8103 The product of two positive numbers is positive. (Contributed by NM, 10-Mar-2008.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
 
Theoremlenlt 8104 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
 
Theoremltnr 8105 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
(𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
 
Theoremltso 8106 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.)
< Or ℝ
 
Theoremgtso 8107 'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.)
< Or ℝ
 
Theoremlttri3 8108 Tightness of real apartness. (Contributed by NM, 5-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
 
Theoremletri3 8109 Tightness of real apartness. (Contributed by NM, 14-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremltleletr 8110 Transitive law, weaker form of (𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶. (Contributed by AV, 14-Oct-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremletr 8111 Transitive law. (Contributed by NM, 12-Nov-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremleid 8112 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.)
(𝐴 ∈ ℝ → 𝐴𝐴)
 
Theoremltne 8113 'Less than' implies not equal. See also ltap 8662 which is the same but for apartness. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.)
((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
 
Theoremltnsym 8114 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
 
Theoremeqlelt 8115 Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 < 𝐵)))
 
Theoremltle 8116 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
 
Theoremlelttr 8117 Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
 
Theoremltletr 8118 Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 25-Aug-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
 
Theoremltnsym2 8119 'Less than' is antisymmetric and irreflexive. (Contributed by NM, 13-Aug-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (𝐴 < 𝐵𝐵 < 𝐴))
 
Theoremeqle 8120 Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005.)
((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
 
Theoremltnri 8121 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
𝐴 ∈ ℝ        ¬ 𝐴 < 𝐴
 
Theoremeqlei 8122 Equality implies 'less than or equal to'. (Contributed by NM, 23-May-1999.) (Revised by Alexander van der Vekens, 20-Mar-2018.)
𝐴 ∈ ℝ       (𝐴 = 𝐵𝐴𝐵)
 
Theoremeqlei2 8123 Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018.)
𝐴 ∈ ℝ       (𝐵 = 𝐴𝐵𝐴)
 
Theoremgtneii 8124 'Less than' implies not equal. See also gtapii 8663 which is the same for apartness. (Contributed by Mario Carneiro, 30-Sep-2013.)
𝐴 ∈ ℝ    &   𝐴 < 𝐵       𝐵𝐴
 
Theoremltneii 8125 'Greater than' implies not equal. (Contributed by Mario Carneiro, 16-Sep-2015.)
𝐴 ∈ ℝ    &   𝐴 < 𝐵       𝐴𝐵
 
Theoremlttri3i 8126 Tightness of real apartness. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
 
Theoremletri3i 8127 Tightness of real apartness. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
 
Theoremltnsymi 8128 'Less than' is not symmetric. (Contributed by NM, 6-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)
 
Theoremlenlti 8129 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 24-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴)
 
Theoremltlei 8130 'Less than' implies 'less than or equal to'. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵𝐴𝐵)
 
Theoremltleii 8131 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐴 < 𝐵       𝐴𝐵
 
Theoremltnei 8132 'Less than' implies not equal. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵𝐵𝐴)
 
Theoremlttri 8133 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)
 
Theoremlelttri 8134 'Less than or equal to', 'less than' transitive law. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)
 
Theoremltletri 8135 'Less than', 'less than or equal to' transitive law. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)
 
Theoremletri 8136 'Less than or equal to' is transitive. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremle2tri3i 8137 Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))
 
Theoremmulgt0i 8138 The product of two positive numbers is positive. (Contributed by NM, 16-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))
 
Theoremmulgt0ii 8139 The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   0 < 𝐴    &   0 < 𝐵       0 < (𝐴 · 𝐵)
 
Theoremltnrd 8140 'Less than' is irreflexive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → ¬ 𝐴 < 𝐴)
 
Theoremgtned 8141 'Less than' implies not equal. See also gtapd 8666 which is the same but for apartness. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐵𝐴)
 
Theoremltned 8142 'Greater than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐴𝐵)
 
Theoremlttri3d 8143 Tightness of real apartness. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
 
Theoremletri3d 8144 Tightness of real apartness. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremeqleltd 8145 Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 < 𝐵)))
 
Theoremlenltd 8146 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
 
Theoremltled 8147 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐴𝐵)
 
Theoremltnsymd 8148 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → ¬ 𝐵 < 𝐴)
 
Theoremnltled 8149 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → ¬ 𝐵 < 𝐴)       (𝜑𝐴𝐵)
 
Theoremlensymd 8150 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → ¬ 𝐵 < 𝐴)
 
Theoremmulgt0d 8151 The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)    &   (𝜑 → 0 < 𝐵)       (𝜑 → 0 < (𝐴 · 𝐵))
 
Theoremletrd 8152 Transitive law deduction for 'less than or equal to'. (Contributed by NM, 20-May-2005.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremlelttrd 8153 Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 < 𝐶)       (𝜑𝐴 < 𝐶)
 
Theoremlttrd 8154 Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐵 < 𝐶)       (𝜑𝐴 < 𝐶)
 
Theorem0lt1 8155 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.)
0 < 1
 
Theoremltntri 8156 Negative trichotomy property for real numbers. It is well known that we cannot prove real number trichotomy, 𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴. Does that mean there is a pair of real numbers where none of those hold (that is, where we can refute each of those three relationships)? Actually, no, as shown here. This is another example of distinguishing between being unable to prove something, or being able to refute it. (Contributed by Jim Kingdon, 13-Aug-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴))
 
4.2.5  Initial properties of the complex numbers
 
Theoremmul12 8157 Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
 
Theoremmul32 8158 Commutative/associative law. (Contributed by NM, 8-Oct-1999.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵))
 
Theoremmul31 8159 Commutative/associative law. (Contributed by Scott Fenton, 3-Jan-2013.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴))
 
Theoremmul4 8160 Rearrangement of 4 factors. (Contributed by NM, 8-Oct-1999.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
 
Theoremmuladd11 8161 A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))))
 
Theorem1p1times 8162 Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
 
Theorempeano2cn 8163 A theorem for complex numbers analogous the second Peano postulate peano2 4632. (Contributed by NM, 17-Aug-2005.)
(𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
 
Theorempeano2re 8164 A theorem for reals analogous the second Peano postulate peano2 4632. (Contributed by NM, 5-Jul-2005.)
(𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
 
Theoremaddcom 8165 Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremaddrid 8166 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
(𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
 
Theoremaddlid 8167 0 is a left identity for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
 
Theoremreaddcan 8168 Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵))
 
Theorem00id 8169 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
(0 + 0) = 0
 
Theoremaddridi 8170 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
𝐴 ∈ ℂ       (𝐴 + 0) = 𝐴
 
Theoremaddlidi 8171 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.)
𝐴 ∈ ℂ       (0 + 𝐴) = 𝐴
 
Theoremaddcomi 8172 Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 + 𝐵) = (𝐵 + 𝐴)
 
Theoremaddcomli 8173 Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   (𝐴 + 𝐵) = 𝐶       (𝐵 + 𝐴) = 𝐶
 
Theoremmul12i 8174 Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))
 
Theoremmul32i 8175 Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)
 
Theoremmul4i 8176 Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ       ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))
 
Theoremaddridd 8177 0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 + 0) = 𝐴)
 
Theoremaddlidd 8178 0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (0 + 𝐴) = 𝐴)
 
Theoremaddcomd 8179 Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremmul12d 8180 Commutative/associative law that swaps the first two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
 
Theoremmul32d 8181 Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵))
 
Theoremmul31d 8182 Commutative/associative law. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴))
 
Theoremmul4d 8183 Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
 
Theoremmuladd11r 8184 A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))
 
Theoremcomraddd 8185 Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.)
(𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐴 = (𝐵 + 𝐶))       (𝜑𝐴 = (𝐶 + 𝐵))
 
4.3  Real and complex numbers - basic operations
 
4.3.1  Addition
 
Theoremadd12 8186 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 11-May-2004.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)))
 
Theoremadd32 8187 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 13-Nov-1999.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
 
Theoremadd32r 8188 Commutative/associative law that swaps the last two terms in a triple sum, rearranging the parentheses. (Contributed by Paul Chapman, 18-May-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = ((𝐴 + 𝐶) + 𝐵))
 
Theoremadd4 8189 Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
 
Theoremadd42 8190 Rearrangement of 4 terms in a sum. (Contributed by NM, 12-May-2005.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)))
 
Theoremadd12i 8191 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 21-Jan-1997.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))
 
Theoremadd32i 8192 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 21-Jan-1997.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)
 
Theoremadd4i 8193 Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ       ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))
 
Theoremadd42i 8194 Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ       ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))
 
Theoremadd12d 8195 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)))
 
Theoremadd32d 8196 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
 
Theoremadd4d 8197 Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
 
Theoremadd42d 8198 Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)))
 
4.3.2  Subtraction
 
Syntaxcmin 8199 Extend class notation to include subtraction.
class
 
Syntaxcneg 8200 Extend class notation to include unary minus. The symbol - is not a class by itself but part of a compound class definition. We do this rather than making it a formal function since it is so commonly used. Note: We use different symbols for unary minus (-) and subtraction cmin 8199 () to prevent syntax ambiguity. For example, looking at the syntax definition co 5923, if we used the same symbol then "( − 𝐴𝐵) " could mean either "𝐴 " minus "𝐵", or it could represent the (meaningless) operation of classes " " and "𝐵 " connected with "operation" "𝐴". On the other hand, "(-𝐴𝐵) " is unambiguous.
class -𝐴
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15738
  Copyright terms: Public domain < Previous  Next >