Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > subf | GIF version |
Description: Subtraction is an operation on the complex numbers. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
Ref | Expression |
---|---|
subf | ⊢ − :(ℂ × ℂ)⟶ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subval 8111 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) = (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | |
2 | subcl 8118 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) ∈ ℂ) | |
3 | 1, 2 | eqeltrrd 2248 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) ∈ ℂ) |
4 | 3 | rgen2a 2524 | . 2 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) ∈ ℂ |
5 | df-sub 8092 | . . 3 ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | |
6 | 5 | fmpo 6180 | . 2 ⊢ (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) ∈ ℂ ↔ − :(ℂ × ℂ)⟶ℂ) |
7 | 4, 6 | mpbi 144 | 1 ⊢ − :(ℂ × ℂ)⟶ℂ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∀wral 2448 × cxp 4609 ⟶wf 5194 ℩crio 5808 (class class class)co 5853 ℂcc 7772 + caddc 7777 − cmin 8090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-sub 8092 |
This theorem is referenced by: dfz2 9284 cnmetdval 13323 cnmet 13324 subcncntop 13347 |
Copyright terms: Public domain | W3C validator |