ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sub Unicode version

Definition df-sub 8245
Description: Define subtraction. Theorem subval 8264 shows its value (and describes how this definition works), Theorem subaddi 8359 relates it to addition, and Theorems subcli 8348 and resubcli 8335 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub  |-  -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 8243 . 2  class  -
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cc 7923 . . 3  class  CC
53cv 1372 . . . . . 6  class  y
6 vz . . . . . . 7  setvar  z
76cv 1372 . . . . . 6  class  z
8 caddc 7928 . . . . . 6  class  +
95, 7, 8co 5944 . . . . 5  class  ( y  +  z )
102cv 1372 . . . . 5  class  x
119, 10wceq 1373 . . . 4  wff  ( y  +  z )  =  x
1211, 6, 4crio 5898 . . 3  class  ( iota_ z  e.  CC  ( y  +  z )  =  x )
132, 3, 4, 4, 12cmpo 5946 . 2  class  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
141, 13wceq 1373 1  wff  -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
Colors of variables: wff set class
This definition is referenced by:  subval  8264  subf  8274  cndsex  14315
  Copyright terms: Public domain W3C validator