ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sub Unicode version

Definition df-sub 8244
Description: Define subtraction. Theorem subval 8263 shows its value (and describes how this definition works), Theorem subaddi 8358 relates it to addition, and Theorems subcli 8347 and resubcli 8334 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub  |-  -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 8242 . 2  class  -
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cc 7922 . . 3  class  CC
53cv 1371 . . . . . 6  class  y
6 vz . . . . . . 7  setvar  z
76cv 1371 . . . . . 6  class  z
8 caddc 7927 . . . . . 6  class  +
95, 7, 8co 5943 . . . . 5  class  ( y  +  z )
102cv 1371 . . . . 5  class  x
119, 10wceq 1372 . . . 4  wff  ( y  +  z )  =  x
1211, 6, 4crio 5897 . . 3  class  ( iota_ z  e.  CC  ( y  +  z )  =  x )
132, 3, 4, 4, 12cmpo 5945 . 2  class  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
141, 13wceq 1372 1  wff  -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
Colors of variables: wff set class
This definition is referenced by:  subval  8263  subf  8273  cndsex  14286
  Copyright terms: Public domain W3C validator