ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sub Unicode version

Definition df-sub 8319
Description: Define subtraction. Theorem subval 8338 shows its value (and describes how this definition works), Theorem subaddi 8433 relates it to addition, and Theorems subcli 8422 and resubcli 8409 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub  |-  -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 8317 . 2  class  -
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cc 7997 . . 3  class  CC
53cv 1394 . . . . . 6  class  y
6 vz . . . . . . 7  setvar  z
76cv 1394 . . . . . 6  class  z
8 caddc 8002 . . . . . 6  class  +
95, 7, 8co 6001 . . . . 5  class  ( y  +  z )
102cv 1394 . . . . 5  class  x
119, 10wceq 1395 . . . 4  wff  ( y  +  z )  =  x
1211, 6, 4crio 5953 . . 3  class  ( iota_ z  e.  CC  ( y  +  z )  =  x )
132, 3, 4, 4, 12cmpo 6003 . 2  class  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
141, 13wceq 1395 1  wff  -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
Colors of variables: wff set class
This definition is referenced by:  subval  8338  subf  8348  cndsex  14517
  Copyright terms: Public domain W3C validator