ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sub Unicode version

Definition df-sub 8130
Description: Define subtraction. Theorem subval 8149 shows its value (and describes how this definition works), Theorem subaddi 8244 relates it to addition, and Theorems subcli 8233 and resubcli 8220 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub  |-  -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 8128 . 2  class  -
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cc 7809 . . 3  class  CC
53cv 1352 . . . . . 6  class  y
6 vz . . . . . . 7  setvar  z
76cv 1352 . . . . . 6  class  z
8 caddc 7814 . . . . . 6  class  +
95, 7, 8co 5875 . . . . 5  class  ( y  +  z )
102cv 1352 . . . . 5  class  x
119, 10wceq 1353 . . . 4  wff  ( y  +  z )  =  x
1211, 6, 4crio 5830 . . 3  class  ( iota_ z  e.  CC  ( y  +  z )  =  x )
132, 3, 4, 4, 12cmpo 5877 . 2  class  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
141, 13wceq 1353 1  wff  -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
Colors of variables: wff set class
This definition is referenced by:  subval  8149  subf  8159
  Copyright terms: Public domain W3C validator