ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sub Unicode version

Definition df-sub 8192
Description: Define subtraction. Theorem subval 8211 shows its value (and describes how this definition works), Theorem subaddi 8306 relates it to addition, and Theorems subcli 8295 and resubcli 8282 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub  |-  -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 8190 . 2  class  -
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cc 7870 . . 3  class  CC
53cv 1363 . . . . . 6  class  y
6 vz . . . . . . 7  setvar  z
76cv 1363 . . . . . 6  class  z
8 caddc 7875 . . . . . 6  class  +
95, 7, 8co 5918 . . . . 5  class  ( y  +  z )
102cv 1363 . . . . 5  class  x
119, 10wceq 1364 . . . 4  wff  ( y  +  z )  =  x
1211, 6, 4crio 5872 . . 3  class  ( iota_ z  e.  CC  ( y  +  z )  =  x )
132, 3, 4, 4, 12cmpo 5920 . 2  class  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
141, 13wceq 1364 1  wff  -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
Colors of variables: wff set class
This definition is referenced by:  subval  8211  subf  8221
  Copyright terms: Public domain W3C validator