ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sub Unicode version

Definition df-sub 8280
Description: Define subtraction. Theorem subval 8299 shows its value (and describes how this definition works), Theorem subaddi 8394 relates it to addition, and Theorems subcli 8383 and resubcli 8370 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub  |-  -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 8278 . 2  class  -
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cc 7958 . . 3  class  CC
53cv 1372 . . . . . 6  class  y
6 vz . . . . . . 7  setvar  z
76cv 1372 . . . . . 6  class  z
8 caddc 7963 . . . . . 6  class  +
95, 7, 8co 5967 . . . . 5  class  ( y  +  z )
102cv 1372 . . . . 5  class  x
119, 10wceq 1373 . . . 4  wff  ( y  +  z )  =  x
1211, 6, 4crio 5921 . . 3  class  ( iota_ z  e.  CC  ( y  +  z )  =  x )
132, 3, 4, 4, 12cmpo 5969 . 2  class  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
141, 13wceq 1373 1  wff  -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
Colors of variables: wff set class
This definition is referenced by:  subval  8299  subf  8309  cndsex  14430
  Copyright terms: Public domain W3C validator