ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfifp4dc GIF version

Theorem dfifp4dc 989
Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019.)
Assertion
Ref Expression
dfifp4dc (DECID 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑𝜓) ∧ (𝜑𝜒))))

Proof of Theorem dfifp4dc
StepHypRef Expression
1 dfifp3dc 988 . 2 (DECID 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (𝜑𝜒))))
2 imordc 902 . . 3 (DECID 𝜑 → ((𝜑𝜓) ↔ (¬ 𝜑𝜓)))
32anbi1d 465 . 2 (DECID 𝜑 → (((𝜑𝜓) ∧ (𝜑𝜒)) ↔ ((¬ 𝜑𝜓) ∧ (𝜑𝜒))))
41, 3bitrd 188 1 (DECID 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑𝜓) ∧ (𝜑𝜒))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984
This theorem is referenced by:  anifpdc  992
  Copyright terms: Public domain W3C validator