| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imordc | GIF version | ||
| Description: Implication in terms of disjunction for a decidable proposition. Based on theorem *4.6 of [WhiteheadRussell] p. 120. The reverse direction, imorr 726, holds for all propositions. (Contributed by Jim Kingdon, 20-Apr-2018.) |
| Ref | Expression |
|---|---|
| imordc | ⊢ (DECID 𝜑 → ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotbdc 877 | . . 3 ⊢ (DECID 𝜑 → (𝜑 ↔ ¬ ¬ 𝜑)) | |
| 2 | 1 | imbi1d 231 | . 2 ⊢ (DECID 𝜑 → ((𝜑 → 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓))) |
| 3 | dcn 847 | . . 3 ⊢ (DECID 𝜑 → DECID ¬ 𝜑) | |
| 4 | dfordc 897 | . . 3 ⊢ (DECID ¬ 𝜑 → ((¬ 𝜑 ∨ 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓))) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ (DECID 𝜑 → ((¬ 𝜑 ∨ 𝜓) ↔ (¬ ¬ 𝜑 → 𝜓))) |
| 6 | 2, 5 | bitr4d 191 | 1 ⊢ (DECID 𝜑 → ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 713 DECID wdc 839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-dc 840 |
| This theorem is referenced by: pm4.62dc 903 pm2.26dc 912 dfifp4dc 989 dfifp5dc 990 nf4dc 1716 algcvgblem 12557 divgcdodd 12651 |
| Copyright terms: Public domain | W3C validator |