ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anifpdc GIF version

Theorem anifpdc 992
Description: The conditional operator is implied by the conjunction of its possible outputs. Dual statement of ifpor 993. (Contributed by BJ, 30-Sep-2019.)
Assertion
Ref Expression
anifpdc (DECID 𝜑 → ((𝜓𝜒) → if-(𝜑, 𝜓, 𝜒)))

Proof of Theorem anifpdc
StepHypRef Expression
1 olc 716 . . 3 (𝜓 → (¬ 𝜑𝜓))
2 olc 716 . . 3 (𝜒 → (𝜑𝜒))
31, 2anim12i 338 . 2 ((𝜓𝜒) → ((¬ 𝜑𝜓) ∧ (𝜑𝜒)))
4 dfifp4dc 989 . 2 (DECID 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑𝜓) ∧ (𝜑𝜒))))
53, 4imbitrrid 156 1 (DECID 𝜑 → ((𝜓𝜒) → if-(𝜑, 𝜓, 𝜒)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator