| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anifpdc | GIF version | ||
| Description: The conditional operator is implied by the conjunction of its possible outputs. Dual statement of ifpor 993. (Contributed by BJ, 30-Sep-2019.) |
| Ref | Expression |
|---|---|
| anifpdc | ⊢ (DECID 𝜑 → ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 716 | . . 3 ⊢ (𝜓 → (¬ 𝜑 ∨ 𝜓)) | |
| 2 | olc 716 | . . 3 ⊢ (𝜒 → (𝜑 ∨ 𝜒)) | |
| 3 | 1, 2 | anim12i 338 | . 2 ⊢ ((𝜓 ∧ 𝜒) → ((¬ 𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) |
| 4 | dfifp4dc 989 | . 2 ⊢ (DECID 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒)))) | |
| 5 | 3, 4 | imbitrrid 156 | 1 ⊢ (DECID 𝜑 → ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 DECID wdc 839 if-wif 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-ifp 984 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |