ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-an GIF version

Theorem ex-an 12628
Description: Example for ax-ia1 105. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
ex-an (2 = 2 ∧ 3 = 3)

Proof of Theorem ex-an
StepHypRef Expression
1 eqid 2115 . 2 2 = 2
2 eqid 2115 . 2 3 = 3
31, 2pm3.2i 268 1 (2 = 2 ∧ 3 = 3)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1314  2c2 8681  3c3 8682
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1408  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-cleq 2108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator