ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-an GIF version

Theorem ex-an 15215
Description: Example for ax-ia1 106. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
ex-an (2 = 2 ∧ 3 = 3)

Proof of Theorem ex-an
StepHypRef Expression
1 eqid 2193 . 2 2 = 2
2 eqid 2193 . 2 3 = 3
31, 2pm3.2i 272 1 (2 = 2 ∧ 3 = 3)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  2c2 9033  3c3 9034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator