ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-or GIF version

Theorem ex-or 13603
Description: Example for ax-io 699. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
ex-or (2 = 3 ∨ 4 = 4)

Proof of Theorem ex-or
StepHypRef Expression
1 eqid 2165 . 2 4 = 4
21olci 722 1 (2 = 3 ∨ 4 = 4)
Colors of variables: wff set class
Syntax hints:  wo 698   = wceq 1343  2c2 8908  3c3 8909  4c4 8910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-gen 1437  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator