HomeHome Intuitionistic Logic Explorer
Theorem List (p. 149 of 161)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14801-14900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcnmpt1t 14801* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))       (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
 
Theoremcnmpt12f 14802* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))    &   (𝜑𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀))       (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀))
 
Theoremcnmpt12 14803* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑𝐿 ∈ (TopOn‘𝑍))    &   (𝜑 → (𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀))    &   ((𝑦 = 𝐴𝑧 = 𝐵) → 𝐶 = 𝐷)       (𝜑 → (𝑥𝑋𝐷) ∈ (𝐽 Cn 𝑀))
 
Theoremcnmpt1st 14804* The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))       (𝜑 → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
 
Theoremcnmpt2nd 14805* The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))       (𝜑 → (𝑥𝑋, 𝑦𝑌𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
 
Theoremcnmpt2c 14806* A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑𝐿 ∈ (TopOn‘𝑍))    &   (𝜑𝑃𝑍)       (𝜑 → (𝑥𝑋, 𝑦𝑌𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
 
Theoremcnmpt21 14807* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))    &   (𝜑𝐿 ∈ (TopOn‘𝑍))    &   (𝜑 → (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀))    &   (𝑧 = 𝐴𝐵 = 𝐶)       (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
 
Theoremcnmpt21f 14808* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))    &   (𝜑𝐹 ∈ (𝐿 Cn 𝑀))       (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐹𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
 
Theoremcnmpt2t 14809* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))       (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀)))
 
Theoremcnmpt22 14810* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))    &   (𝜑𝐿 ∈ (TopOn‘𝑍))    &   (𝜑𝑀 ∈ (TopOn‘𝑊))    &   (𝜑 → (𝑧𝑍, 𝑤𝑊𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁))    &   ((𝑧 = 𝐴𝑤 = 𝐵) → 𝐶 = 𝐷)       (𝜑 → (𝑥𝑋, 𝑦𝑌𝐷) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
 
Theoremcnmpt22f 14811* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))    &   (𝜑𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁))       (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
 
Theoremcnmpt1res 14812* The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.)
𝐾 = (𝐽t 𝑌)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝑌𝑋)    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))       (𝜑 → (𝑥𝑌𝐴) ∈ (𝐾 Cn 𝐿))
 
Theoremcnmpt2res 14813* The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
𝐾 = (𝐽t 𝑌)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝑌𝑋)    &   𝑁 = (𝑀t 𝑊)    &   (𝜑𝑀 ∈ (TopOn‘𝑍))    &   (𝜑𝑊𝑍)    &   (𝜑 → (𝑥𝑋, 𝑦𝑍𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿))       (𝜑 → (𝑥𝑌, 𝑦𝑊𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿))
 
Theoremcnmptcom 14814* The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))       (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿))
 
Theoremimasnopn 14815 If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
𝑋 = 𝐽       (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ∈ 𝐾)
 
9.1.10  Homeomorphisms
 
Syntaxchmeo 14816 Extend class notation with the class of all homeomorphisms.
class Homeo
 
Definitiondf-hmeo 14817* Function returning all the homeomorphisms from topology 𝑗 to topology 𝑘. (Contributed by FL, 14-Feb-2007.)
Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
 
Theoremhmeofn 14818 The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.)
Homeo Fn (Top × Top)
 
Theoremhmeofvalg 14819* The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
 
Theoremishmeo 14820 The predicate F is a homeomorphism between topology 𝐽 and topology 𝐾. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
 
Theoremhmeocn 14821 A homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
(𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
 
Theoremhmeocnvcn 14822 The converse of a homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
(𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
 
Theoremhmeocnv 14823 The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))
 
Theoremhmeof1o2 14824 A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro, 22-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → 𝐹:𝑋1-1-onto𝑌)
 
Theoremhmeof1o 14825 A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.)
𝑋 = 𝐽    &   𝑌 = 𝐾       (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto𝑌)
 
Theoremhmeoima 14826 The image of an open set by a homeomorphism is an open set. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝐽) → (𝐹𝐴) ∈ 𝐾)
 
Theoremhmeoopn 14827 Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
𝑋 = 𝐽       ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐹𝐴) ∈ 𝐾))
 
Theoremhmeocld 14828 Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
𝑋 = 𝐽       ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹𝐴) ∈ (Clsd‘𝐾)))
 
Theoremhmeontr 14829 Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015.)
𝑋 = 𝐽       ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴)))
 
Theoremhmeoimaf1o 14830* The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐺 = (𝑥𝐽 ↦ (𝐹𝑥))       (𝐹 ∈ (𝐽Homeo𝐾) → 𝐺:𝐽1-1-onto𝐾)
 
Theoremhmeores 14831 The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
𝑋 = 𝐽       ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌)Homeo(𝐾t (𝐹𝑌))))
 
Theoremhmeoco 14832 The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐽Homeo𝐿))
 
Theoremidhmeo 14833 The identity function is a homeomorphism. (Contributed by FL, 14-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
(𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽Homeo𝐽))
 
Theoremhmeocnvb 14834 The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
(Rel 𝐹 → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽)))
 
Theoremtxhmeo 14835* Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝑋 = 𝐽    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐽Homeo𝐿))    &   (𝜑𝐺 ∈ (𝐾Homeo𝑀))       (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐿 ×t 𝑀)))
 
Theoremtxswaphmeolem 14836* Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.)
((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌))
 
Theoremtxswaphmeo 14837* There is a homeomorphism from 𝑋 × 𝑌 to 𝑌 × 𝑋. (Contributed by Mario Carneiro, 21-Mar-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)))
 
9.2  Metric spaces
 
9.2.1  Pseudometric spaces
 
Theorempsmetrel 14838 The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.)
Rel PsMet
 
Theoremispsmet 14839* Express the predicate "𝐷 is a pseudometric". (Contributed by Thierry Arnoux, 7-Feb-2018.)
(𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
 
Theorempsmetdmdm 14840 Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
(𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
 
Theorempsmetf 14841 The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.)
(𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
 
Theorempsmetcl 14842 Closure of the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 7-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
 
Theorempsmet0 14843 The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
 
Theorempsmettri2 14844 Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
 
Theorempsmetsym 14845 The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
 
Theorempsmettri 14846 Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵)))
 
Theorempsmetge0 14847 The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) (Revised by Jim Kingdon, 19-Apr-2023.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
 
Theorempsmetxrge0 14848 The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
(𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
 
Theorempsmetres2 14849 Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅))
 
Theorempsmetlecl 14850 Real closure of an extended metric value that is upper bounded by a real. (Contributed by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ)
 
Theoremdistspace 14851 A set 𝑋 together with a (distance) function 𝐷 which is a pseudometric is a distance space (according to E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006), i.e. a (base) set 𝑋 equipped with a distance 𝐷, which is a mapping of two elements of the base set to the (extended) reals and which is nonnegative, symmetric and equal to 0 if the two elements are equal. (Contributed by AV, 15-Oct-2021.) (Revised by AV, 5-Jul-2022.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ (𝐴𝐷𝐴) = 0) ∧ (0 ≤ (𝐴𝐷𝐵) ∧ (𝐴𝐷𝐵) = (𝐵𝐷𝐴))))
 
9.2.2  Basic metric space properties
 
Syntaxcxms 14852 Extend class notation with the class of extended metric spaces.
class ∞MetSp
 
Syntaxcms 14853 Extend class notation with the class of metric spaces.
class MetSp
 
Syntaxctms 14854 Extend class notation with the function mapping a metric to the metric space it defines.
class toMetSp
 
Definitiondf-xms 14855 Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))}
 
Definitiondf-ms 14856 Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006.)
MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}
 
Definitiondf-tms 14857 Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015.)
toMetSp = (𝑑 ran ∞Met ↦ ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩))
 
Theoremmetrel 14858 The class of metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
Rel Met
 
Theoremxmetrel 14859 The class of extended metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
Rel ∞Met
 
Theoremismet 14860* Express the predicate "𝐷 is a metric". (Contributed by NM, 25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
(𝑋𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
 
Theoremisxmet 14861* Express the predicate "𝐷 is an extended metric". (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝑋𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
 
Theoremismeti 14862* Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
𝑋 ∈ V    &   𝐷:(𝑋 × 𝑋)⟶ℝ    &   ((𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))    &   ((𝑥𝑋𝑦𝑋𝑧𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))       𝐷 ∈ (Met‘𝑋)
 
Theoremisxmetd 14863* Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝜑𝑋 ∈ V)    &   (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))       (𝜑𝐷 ∈ (∞Met‘𝑋))
 
Theoremisxmet2d 14864* It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample: 𝐷(𝑥, 𝑦) = if(𝑥 = 𝑦, 0, -∞) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝜑𝑋 ∈ V)    &   (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐷𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))       (𝜑𝐷 ∈ (∞Met‘𝑋))
 
Theoremmetflem 14865* Lemma for metf 14867 and others. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
 
Theoremxmetf 14866 Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
 
Theoremmetf 14867 Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.)
(𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
 
Theoremxmetcl 14868 Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
 
Theoremmetcl 14869 Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ)
 
Theoremismet2 14870 An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))
 
Theoremmetxmet 14871 A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
 
Theoremxmetdmdm 14872 Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.)
(𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷)
 
Theoremmetdmdm 14873 Recover the base set from a metric. (Contributed by Mario Carneiro, 23-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) → 𝑋 = dom dom 𝐷)
 
Theoremxmetunirn 14874 Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.)
(𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
 
Theoremxmeteq0 14875 The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))
 
Theoremmeteq0 14876 The value of a metric is zero iff its arguments are equal. Property M2 of [Kreyszig] p. 4. (Contributed by NM, 30-Aug-2006.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))
 
Theoremxmettri2 14877 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
 
Theoremmettri2 14878 Triangle inequality for the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
 
Theoremxmet0 14879 The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
 
Theoremmet0 14880 The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by NM, 30-Aug-2006.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
 
Theoremxmetge0 14881 The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
 
Theoremmetge0 14882 The distance function of a metric space is nonnegative. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
 
Theoremxmetlecl 14883 Real closure of an extended metric value that is upper bounded by a real. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ)
 
Theoremxmetsym 14884 The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
 
Theoremxmetpsmet 14885 An extended metric is a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
(𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
 
Theoremxmettpos 14886 The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐷 ∈ (∞Met‘𝑋) → tpos 𝐷 = 𝐷)
 
Theoremmetsym 14887 The distance function of a metric space is symmetric. Definition 14-1.1(c) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
 
Theoremxmettri 14888 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵)))
 
Theoremmettri 14889 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.)
((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵)))
 
Theoremxmettri3 14890 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶)))
 
Theoremmettri3 14891 Triangle inequality for the distance function of a metric space. (Contributed by NM, 13-Mar-2007.)
((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶)))
 
Theoremxmetrtri 14892 One half of the reverse triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵))
 
Theoremmetrtri 14893 Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 21-Apr-2023.)
((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵))
 
Theoremmetn0 14894 A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅))
 
Theoremxmetres2 14895 Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))
 
Theoremmetreslem 14896 Lemma for metres 14899. (Contributed by Mario Carneiro, 24-Aug-2015.)
(dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
 
Theoremmetres2 14897 Lemma for metres 14899. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅))
 
Theoremxmetres 14898 A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015.)
(𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋𝑅)))
 
Theoremmetres 14899 A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋𝑅)))
 
Theorem0met 14900 The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
∅ ∈ (Met‘∅)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16097
  Copyright terms: Public domain < Previous  Next >