Theorem List for Intuitionistic Logic Explorer - 14801-14900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | topssnei 14801 |
A finer topology has more neighborhoods. (Contributed by Mario
Carneiro, 9-Apr-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽 ⊆ 𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆)) |
| |
| Theorem | innei 14802 |
The intersection of two neighborhoods of a set is also a neighborhood of
the set. Generalization to subsets of Property Vii of [BourbakiTop1]
p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁 ∩ 𝑀) ∈ ((nei‘𝐽)‘𝑆)) |
| |
| Theorem | opnneiid 14803 |
Only an open set is a neighborhood of itself. (Contributed by FL,
2-Oct-2006.)
|
| ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁 ∈ 𝐽)) |
| |
| Theorem | neissex 14804* |
For any neighborhood 𝑁 of 𝑆, there is a neighborhood
𝑥
of
𝑆 such that 𝑁 is a neighborhood of all
subsets of 𝑥.
Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3.
(Contributed by FL, 2-Oct-2006.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦 ⊆ 𝑥 → 𝑁 ∈ ((nei‘𝐽)‘𝑦))) |
| |
| Theorem | 0nei 14805 |
The empty set is a neighborhood of itself. (Contributed by FL,
10-Dec-2006.)
|
| ⊢ (𝐽 ∈ Top → ∅ ∈
((nei‘𝐽)‘∅)) |
| |
| 9.1.6 Subspace topologies
|
| |
| Theorem | restrcl 14806 |
Reverse closure for the subspace topology. (Contributed by Mario
Carneiro, 19-Mar-2015.) (Proof shortened by Jim Kingdon,
23-Mar-2023.)
|
| ⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
| |
| Theorem | restbasg 14807 |
A subspace topology basis is a basis. (Contributed by Mario Carneiro,
19-Mar-2015.)
|
| ⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (𝐵 ↾t 𝐴) ∈ TopBases) |
| |
| Theorem | tgrest 14808 |
A subspace can be generated by restricted sets from a basis for the
original topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
(Proof shortened by Mario Carneiro, 30-Aug-2015.)
|
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (topGen‘(𝐵 ↾t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴)) |
| |
| Theorem | resttop 14809 |
A subspace topology is a topology. Definition of subspace topology in
[Munkres] p. 89. 𝐴 is normally a subset of
the base set of 𝐽.
(Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro,
1-May-2015.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
| |
| Theorem | resttopon 14810 |
A subspace topology is a topology on the base set. (Contributed by
Mario Carneiro, 13-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| |
| Theorem | restuni 14811 |
The underlying set of a subspace topology. (Contributed by FL,
5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| |
| Theorem | stoig 14812 |
The topological space built with a subspace topology. (Contributed by
FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → {〈(Base‘ndx), 𝐴〉,
〈(TopSet‘ndx), (𝐽 ↾t 𝐴)〉} ∈ TopSp) |
| |
| Theorem | restco 14813 |
Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.)
(Revised by Mario Carneiro, 1-May-2015.)
|
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝐽 ↾t 𝐴) ↾t 𝐵) = (𝐽 ↾t (𝐴 ∩ 𝐵))) |
| |
| Theorem | restabs 14814 |
Equivalence of being a subspace of a subspace and being a subspace of the
original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened
by Mario Carneiro, 1-May-2015.)
|
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) |
| |
| Theorem | restin 14815 |
When the subspace region is not a subset of the base of the topology,
the resulting set is the same as the subspace restricted to the base.
(Contributed by Mario Carneiro, 15-Dec-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
| |
| Theorem | restuni2 14816 |
The underlying set of a subspace topology. (Contributed by Mario
Carneiro, 21-Mar-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t 𝐴)) |
| |
| Theorem | resttopon2 14817 |
The underlying set of a subspace topology. (Contributed by Mario
Carneiro, 13-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ 𝑋))) |
| |
| Theorem | rest0 14818 |
The subspace topology induced by the topology 𝐽 on the empty set.
(Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro,
1-May-2015.)
|
| ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) =
{∅}) |
| |
| Theorem | restsn 14819 |
The only subspace topology induced by the topology {∅}.
(Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro,
15-Dec-2013.)
|
| ⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t
𝐴) =
{∅}) |
| |
| Theorem | restopnb 14820 |
If 𝐵 is an open subset of the subspace
base set 𝐴, then any
subset of 𝐵 is open iff it is open in 𝐴.
(Contributed by Mario
Carneiro, 2-Mar-2015.)
|
| ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 ↔ 𝐶 ∈ (𝐽 ↾t 𝐴))) |
| |
| Theorem | ssrest 14821 |
If 𝐾 is a finer topology than 𝐽, then
the subspace topologies
induced by 𝐴 maintain this relationship.
(Contributed by Mario
Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
|
| ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) |
| |
| Theorem | restopn2 14822 |
If 𝐴 is open, then 𝐵 is open in 𝐴 iff it
is an open subset of
𝐴. (Contributed by Mario Carneiro,
2-Mar-2015.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) |
| |
| Theorem | restdis 14823 |
A subspace of a discrete topology is discrete. (Contributed by Mario
Carneiro, 19-Mar-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝐵) = 𝒫 𝐵) |
| |
| 9.1.7 Limits and continuity in topological
spaces
|
| |
| Syntax | ccn 14824 |
Extend class notation with the class of continuous functions between
topologies.
|
| class Cn |
| |
| Syntax | ccnp 14825 |
Extend class notation with the class of functions between topologies
continuous at a given point.
|
| class CnP |
| |
| Syntax | clm 14826 |
Extend class notation with a function on topological spaces whose value is
the convergence relation for limit sequences in the space.
|
| class ⇝𝑡 |
| |
| Definition | df-cn 14827* |
Define a function on two topologies whose value is the set of continuous
mappings from the first topology to the second. Based on definition of
continuous function in [Munkres] p. 102.
See iscn 14836 for the predicate
form. (Contributed by NM, 17-Oct-2006.)
|
| ⊢ Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) |
| |
| Definition | df-cnp 14828* |
Define a function on two topologies whose value is the set of continuous
mappings at a specified point in the first topology. Based on Theorem
7.2(g) of [Munkres] p. 107.
(Contributed by NM, 17-Oct-2006.)
|
| ⊢ CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
| |
| Definition | df-lm 14829* |
Define a function on topologies whose value is the convergence relation
for sequences into the given topological space. Although 𝑓 is
typically a sequence (a function from an upperset of integers) with
values in the topological space, it need not be. Note, however, that
the limit property concerns only values at integers, so that the
real-valued function (𝑥 ∈ ℝ ↦ (sin‘(π
· 𝑥)))
converges to zero (in the standard topology on the reals) with this
definition. (Contributed by NM, 7-Sep-2006.)
|
| ⊢ ⇝𝑡 = (𝑗 ∈ Top ↦
{〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗
↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
| |
| Theorem | lmrcl 14830 |
Reverse closure for the convergence relation. (Contributed by Mario
Carneiro, 7-Sep-2015.)
|
| ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
| |
| Theorem | lmfval 14831* |
The relation "sequence 𝑓 converges to point 𝑦 "
in a metric
space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
| ⊢ (𝐽 ∈ (TopOn‘𝑋) →
(⇝𝑡‘𝐽) = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
| |
| Theorem | lmreltop 14832 |
The topological space convergence relation is a relation. (Contributed
by Jim Kingdon, 25-Mar-2023.)
|
| ⊢ (𝐽 ∈ Top → Rel
(⇝𝑡‘𝐽)) |
| |
| Theorem | cnfval 14833* |
The set of all continuous functions from topology 𝐽 to topology
𝐾. (Contributed by NM, 17-Oct-2006.)
(Revised by Mario Carneiro,
21-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) |
| |
| Theorem | cnpfval 14834* |
The function mapping the points in a topology 𝐽 to the set of all
functions from 𝐽 to topology 𝐾 continuous at that
point.
(Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) |
| |
| Theorem | cnovex 14835 |
The class of all continuous functions from a topology to another is a
set. (Contributed by Jim Kingdon, 14-Dec-2023.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
| |
| Theorem | iscn 14836* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾". Definition of
continuous function in
[Munkres] p. 102. (Contributed by NM,
17-Oct-2006.) (Revised by Mario
Carneiro, 21-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| |
| Theorem | cnpval 14837* |
The set of all functions from topology 𝐽 to topology 𝐾 that are
continuous at a point 𝑃. (Contributed by NM, 17-Oct-2006.)
(Revised by Mario Carneiro, 11-Nov-2013.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) |
| |
| Theorem | iscnp 14838* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾 at point 𝑃".
Based on Theorem 7.2(g) of
[Munkres] p. 107. (Contributed by NM,
17-Oct-2006.) (Revised by Mario
Carneiro, 21-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
| |
| Theorem | iscn2 14839* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾". Definition of
continuous function in
[Munkres] p. 102. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| |
| Theorem | cntop1 14840 |
Reverse closure for a continuous function. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
| ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
| |
| Theorem | cntop2 14841 |
Reverse closure for a continuous function. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
| ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| |
| Theorem | iscnp3 14842* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾 at point 𝑃".
(Contributed by NM,
15-May-2007.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))))) |
| |
| Theorem | cnf 14843 |
A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.)
(Revised by Mario Carneiro, 21-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| |
| Theorem | cnf2 14844 |
A continuous function is a mapping. (Contributed by Mario Carneiro,
21-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| |
| Theorem | cnprcl2k 14845 |
Reverse closure for a function continuous at a point. (Contributed by
Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ 𝑋) |
| |
| Theorem | cnpf2 14846 |
A continuous function at point 𝑃 is a mapping. (Contributed by
Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
| |
| Theorem | tgcn 14847* |
The continuity predicate when the range is given by a basis for a
topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by
Mario Carneiro, 22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 = (topGen‘𝐵)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| |
| Theorem | tgcnp 14848* |
The "continuous at a point" predicate when the range is given by a
basis
for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised
by Mario Carneiro, 22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 = (topGen‘𝐵)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
| |
| Theorem | ssidcn 14849 |
The identity function is a continuous function from one topology to
another topology on the same set iff the domain is finer than the
codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by
Mario Carneiro, 21-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 ⊆ 𝐽)) |
| |
| Theorem | icnpimaex 14850* |
Property of a function continuous at a point. (Contributed by FL,
31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.)
|
| ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝐴)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)) |
| |
| Theorem | idcn 14851 |
A restricted identity function is a continuous function. (Contributed
by FL, 27-Dec-2006.) (Proof shortened by Mario Carneiro,
21-Mar-2015.)
|
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
| |
| Theorem | lmbr 14852* |
Express the binary relation "sequence 𝐹 converges to point
𝑃 " in a topological space.
Definition 1.4-1 of [Kreyszig] p. 25.
The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more
general
than sequences when convenient; see the comment in df-lm 14829.
(Contributed by Mario Carneiro, 14-Nov-2013.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)))) |
| |
| Theorem | lmbr2 14853* |
Express the binary relation "sequence 𝐹 converges to point
𝑃 " in a metric space using an
arbitrary upper set of integers.
(Contributed by Mario Carneiro, 14-Nov-2013.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ 𝑍 =
(ℤ≥‘𝑀)
& ⊢ (𝜑 → 𝑀 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
| |
| Theorem | lmbrf 14854* |
Express the binary relation "sequence 𝐹 converges to point
𝑃 " in a metric space using an
arbitrary upper set of integers.
This version of lmbr2 14853 presupposes that 𝐹 is a function.
(Contributed by Mario Carneiro, 14-Nov-2013.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ 𝑍 =
(ℤ≥‘𝑀)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐴 ∈ 𝑢)))) |
| |
| Theorem | lmconst 14855 |
A constant sequence converges to its value. (Contributed by NM,
8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃) |
| |
| Theorem | lmcvg 14856* |
Convergence property of a converging sequence. (Contributed by Mario
Carneiro, 14-Nov-2013.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑃 ∈ 𝑈)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃)
& ⊢ (𝜑 → 𝑈 ∈ 𝐽) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈) |
| |
| Theorem | iscnp4 14857* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾 at point 𝑃 "
in terms of neighborhoods.
(Contributed by FL, 18-Jul-2011.) (Revised by Mario Carneiro,
10-Sep-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦))) |
| |
| Theorem | cnpnei 14858* |
A condition for continuity at a point in terms of neighborhoods.
(Contributed by Jeff Hankins, 7-Sep-2009.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}))) |
| |
| Theorem | cnima 14859 |
An open subset of the codomain of a continuous function has an open
preimage. (Contributed by FL, 15-Dec-2006.)
|
| ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
| |
| Theorem | cnco 14860 |
The composition of two continuous functions is a continuous function.
(Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
| ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
| |
| Theorem | cnptopco 14861 |
The composition of a function 𝐹 continuous at 𝑃 with a function
continuous at (𝐹‘𝑃) is continuous at 𝑃.
Proposition 2 of
[BourbakiTop1] p. I.9.
(Contributed by FL, 16-Nov-2006.) (Proof
shortened by Mario Carneiro, 27-Dec-2014.)
|
| ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → (𝐺 ∘ 𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃)) |
| |
| Theorem | cnclima 14862 |
A closed subset of the codomain of a continuous function has a closed
preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
| ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)) |
| |
| Theorem | cnntri 14863 |
Property of the preimage of an interior. (Contributed by Mario
Carneiro, 25-Aug-2015.)
|
| ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
| |
| Theorem | cnntr 14864* |
Continuity in terms of interior. (Contributed by Jeff Hankins,
2-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))))) |
| |
| Theorem | cnss1 14865 |
If the topology 𝐾 is finer than 𝐽, then there are more
continuous functions from 𝐾 than from 𝐽. (Contributed by Mario
Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿)) |
| |
| Theorem | cnss2 14866 |
If the topology 𝐾 is finer than 𝐽, then there are fewer
continuous functions into 𝐾 than into 𝐽 from some other space.
(Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario
Carneiro, 21-Aug-2015.)
|
| ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿)) |
| |
| Theorem | cncnpi 14867 |
A continuous function is continuous at all points. One direction of
Theorem 7.2(g) of [Munkres] p. 107.
(Contributed by Raph Levien,
20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
| |
| Theorem | cnsscnp 14868 |
The set of continuous functions is a subset of the set of continuous
functions at a point. (Contributed by Raph Levien, 21-Oct-2006.)
(Revised by Mario Carneiro, 21-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝑃 ∈ 𝑋 → (𝐽 Cn 𝐾) ⊆ ((𝐽 CnP 𝐾)‘𝑃)) |
| |
| Theorem | cncnp 14869* |
A continuous function is continuous at all points. Theorem 7.2(g) of
[Munkres] p. 107. (Contributed by NM,
15-May-2007.) (Proof shortened
by Mario Carneiro, 21-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
| |
| Theorem | cncnp2m 14870* |
A continuous function is continuous at all points. Theorem 7.2(g) of
[Munkres] p. 107. (Contributed by Raph
Levien, 20-Nov-2006.) (Revised
by Jim Kingdon, 30-Mar-2023.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| |
| Theorem | cnnei 14871* |
Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux,
3-Jan-2018.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝 ∈ 𝑋 ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹 “ 𝑣) ⊆ 𝑤)) |
| |
| Theorem | cnconst2 14872 |
A constant function is continuous. (Contributed by Mario Carneiro,
19-Mar-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾)) |
| |
| Theorem | cnconst 14873 |
A constant function is continuous. (Contributed by FL, 15-Jan-2007.)
(Proof shortened by Mario Carneiro, 19-Mar-2015.)
|
| ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐵 ∈ 𝑌 ∧ 𝐹:𝑋⟶{𝐵})) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| |
| Theorem | cnrest 14874 |
Continuity of a restriction from a subspace. (Contributed by Jeff
Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| |
| Theorem | cnrest2 14875 |
Equivalence of continuity in the parent topology and continuity in a
subspace. (Contributed by Jeff Hankins, 10-Jul-2009.) (Proof shortened
by Mario Carneiro, 21-Aug-2015.)
|
| ⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)))) |
| |
| Theorem | cnrest2r 14876 |
Equivalence of continuity in the parent topology and continuity in a
subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario
Carneiro, 7-Jun-2014.)
|
| ⊢ (𝐾 ∈ Top → (𝐽 Cn (𝐾 ↾t 𝐵)) ⊆ (𝐽 Cn 𝐾)) |
| |
| Theorem | cnptopresti 14877 |
One direction of cnptoprest 14878 under the weaker condition that the point
is in the subset rather than the interior of the subset. (Contributed
by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon,
31-Mar-2023.)
|
| ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃)) |
| |
| Theorem | cnptoprest 14878 |
Equivalence of continuity at a point and continuity of the restricted
function at a point. (Contributed by Mario Carneiro, 8-Aug-2014.)
(Revised by Jim Kingdon, 5-Apr-2023.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃))) |
| |
| Theorem | cnptoprest2 14879 |
Equivalence of point-continuity in the parent topology and
point-continuity in a subspace. (Contributed by Mario Carneiro,
9-Aug-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃))) |
| |
| Theorem | cndis 14880 |
Every function is continuous when the domain is discrete. (Contributed
by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋 ↑𝑚 𝐴)) |
| |
| Theorem | cnpdis 14881 |
If 𝐴 is an isolated point in 𝑋 (or
equivalently, the singleton
{𝐴} is open in 𝑋), then every function is
continuous at
𝐴. (Contributed by Mario Carneiro,
9-Sep-2015.)
|
| ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) → ((𝐽 CnP 𝐾)‘𝐴) = (𝑌 ↑𝑚 𝑋)) |
| |
| Theorem | lmfpm 14882 |
If 𝐹 converges, then 𝐹 is a
partial function. (Contributed by
Mario Carneiro, 23-Dec-2013.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ∈ (𝑋 ↑pm
ℂ)) |
| |
| Theorem | lmfss 14883 |
Inclusion of a function having a limit (used to ensure the limit
relation is a set, under our definition). (Contributed by NM,
7-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ⊆ (ℂ × 𝑋)) |
| |
| Theorem | lmcl 14884 |
Closure of a limit. (Contributed by NM, 19-Dec-2006.) (Revised by
Mario Carneiro, 23-Dec-2013.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) |
| |
| Theorem | lmss 14885 |
Limit on a subspace. (Contributed by NM, 30-Jan-2008.) (Revised by
Mario Carneiro, 30-Dec-2013.)
|
| ⊢ 𝐾 = (𝐽 ↾t 𝑌)
& ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑃 ∈ 𝑌)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑌) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹(⇝𝑡‘𝐾)𝑃)) |
| |
| Theorem | sslm 14886 |
A finer topology has fewer convergent sequences (but the sequences that
do converge, converge to the same value). (Contributed by Mario
Carneiro, 15-Sep-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) →
(⇝𝑡‘𝐾) ⊆
(⇝𝑡‘𝐽)) |
| |
| Theorem | lmres 14887 |
A function converges iff its restriction to an upper integers set
converges. (Contributed by Mario Carneiro, 31-Dec-2013.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝑋 ↑pm
ℂ))
& ⊢ (𝜑 → 𝑀 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ↾
(ℤ≥‘𝑀))(⇝𝑡‘𝐽)𝑃)) |
| |
| Theorem | lmff 14888* |
If 𝐹 converges, there is some upper
integer set on which 𝐹 is
a total function. (Contributed by Mario Carneiro, 31-Dec-2013.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ dom
(⇝𝑡‘𝐽)) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋) |
| |
| Theorem | lmtopcnp 14889 |
The image of a convergent sequence under a continuous map is
convergent to the image of the original point. (Contributed by Mario
Carneiro, 3-May-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
|
| ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃)
& ⊢ (𝜑 → 𝐾 ∈ Top) & ⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) |
| |
| Theorem | lmcn 14890 |
The image of a convergent sequence under a continuous map is convergent
to the image of the original point. (Contributed by Mario Carneiro,
3-May-2014.)
|
| ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃)
& ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) |
| |
| 9.1.8 Product topologies
|
| |
| Syntax | ctx 14891 |
Extend class notation with the binary topological product operation.
|
| class ×t |
| |
| Definition | df-tx 14892* |
Define the binary topological product, which is homeomorphic to the
general topological product over a two element set, but is more
convenient to use. (Contributed by Jeff Madsen, 2-Sep-2009.)
|
| ⊢ ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)))) |
| |
| Theorem | txvalex 14893 |
Existence of the binary topological product. If 𝑅 and 𝑆 are
known to be topologies, see txtop 14899. (Contributed by Jim Kingdon,
3-Aug-2023.)
|
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) ∈ V) |
| |
| Theorem | txval 14894* |
Value of the binary topological product operation. (Contributed by Jeff
Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.)
|
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵)) |
| |
| Theorem | txuni2 14895* |
The underlying set of the product of two topologies. (Contributed by
Mario Carneiro, 31-Aug-2015.)
|
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))
& ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪
𝑆
⇒ ⊢ (𝑋 × 𝑌) = ∪ 𝐵 |
| |
| Theorem | txbasex 14896* |
The basis for the product topology is a set. (Contributed by Mario
Carneiro, 2-Sep-2015.)
|
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) |
| |
| Theorem | txbas 14897* |
The set of Cartesian products of elements from two topological bases is
a basis. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario
Carneiro, 31-Aug-2015.)
|
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → 𝐵 ∈ TopBases) |
| |
| Theorem | eltx 14898* |
A set in a product is open iff each point is surrounded by an open
rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
|
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
| |
| Theorem | txtop 14899 |
The product of two topologies is a topology. (Contributed by Jeff
Madsen, 2-Sep-2009.)
|
| ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) |
| |
| Theorem | txtopi 14900 |
The product of two topologies is a topology. (Contributed by Jeff
Madsen, 15-Jun-2010.)
|
| ⊢ 𝑅 ∈ Top & ⊢ 𝑆 ∈
Top ⇒ ⊢ (𝑅 ×t 𝑆) ∈ Top |