HomeHome Intuitionistic Logic Explorer
Theorem List (p. 149 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14801-14900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremntrss 14801 Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆))
 
Theoremsscls 14802 A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
 
Theoremntrss2 14803 A subset includes its interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
 
Theoremssntr 14804 An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑂𝐽𝑂𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆))
 
Theoremntrss3 14805 The interior of a subset of a topological space is included in the space. (Contributed by NM, 1-Oct-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑋)
 
Theoremntrin 14806 A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) = (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)))
 
Theoremisopn3 14807 A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))
 
Theoremntridm 14808 The interior operation is idempotent. (Contributed by NM, 2-Oct-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘((int‘𝐽)‘𝑆)) = ((int‘𝐽)‘𝑆))
 
Theoremclstop 14809 The closure of a topology's underlying set is the entire set. (Contributed by NM, 5-Oct-2007.) (Proof shortened by Jim Kingdon, 11-Mar-2023.)
𝑋 = 𝐽       (𝐽 ∈ Top → ((cls‘𝐽)‘𝑋) = 𝑋)
 
Theoremntrtop 14810 The interior of a topology's underlying set is the entire set. (Contributed by NM, 12-Sep-2006.)
𝑋 = 𝐽       (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋)
 
Theoremclsss2 14811 If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007.)
𝑋 = 𝐽       ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶)
 
Theoremclsss3 14812 The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
 
Theoremntrcls0 14813 A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) = ∅)
 
Theoremntreq0 14814* Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅)))
 
Theoremcls0 14815 The closure of the empty set. (Contributed by NM, 2-Oct-2007.) (Proof shortened by Jim Kingdon, 12-Mar-2023.)
(𝐽 ∈ Top → ((cls‘𝐽)‘∅) = ∅)
 
Theoremntr0 14816 The interior of the empty set. (Contributed by NM, 2-Oct-2007.)
(𝐽 ∈ Top → ((int‘𝐽)‘∅) = ∅)
 
Theoremisopn3i 14817 An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.)
((𝐽 ∈ Top ∧ 𝑆𝐽) → ((int‘𝐽)‘𝑆) = 𝑆)
 
Theoremdiscld 14818 The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)
(𝐴𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴)
 
Theoremsn0cld 14819 The closed sets of the topology {∅}. (Contributed by FL, 5-Jan-2009.)
(Clsd‘{∅}) = {∅}
 
9.1.5  Neighborhoods
 
Syntaxcnei 14820 Extend class notation with neighborhood relation for topologies.
class nei
 
Definitiondf-nei 14821* Define a function on topologies whose value is a map from a subset to its neighborhoods. (Contributed by NM, 11-Feb-2007.)
nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦 ∈ 𝒫 𝑗 ∣ ∃𝑔𝑗 (𝑥𝑔𝑔𝑦)}))
 
Theoremneifval 14822* Value of the neighborhood function on the subsets of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       (𝐽 ∈ Top → (nei‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}))
 
Theoremneif 14823 The neighborhood function is a function from the set of the subsets of the base set of a topology. (Contributed by NM, 12-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋)
 
Theoremneiss2 14824 A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
 
Theoremneival 14825* Value of the set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)})
 
Theoremisnei 14826* The predicate "the class 𝑁 is a neighborhood of 𝑆". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
 
Theoremneiint 14827 An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁)))
 
Theoremisneip 14828* The predicate "the class 𝑁 is a neighborhood of point 𝑃". (Contributed by NM, 26-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
 
Theoremneii1 14829 A neighborhood is included in the topology's base set. (Contributed by NM, 12-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁𝑋)
 
Theoremneisspw 14830 The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015.)
𝑋 = 𝐽       (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋)
 
Theoremneii2 14831* Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
 
Theoremneiss 14832 Any neighborhood of a set 𝑆 is also a neighborhood of any subset 𝑅𝑆. Similar to Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅))
 
Theoremssnei 14833 A set is included in any of its neighborhoods. Generalization to subsets of elnei 14834. (Contributed by FL, 16-Nov-2006.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)
 
Theoremelnei 14834 A point belongs to any of its neighborhoods. Property Viii of [BourbakiTop1] p. I.3. (Contributed by FL, 28-Sep-2006.)
((𝐽 ∈ Top ∧ 𝑃𝐴𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑃𝑁)
 
Theorem0nnei 14835 The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.)
((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))
 
Theoremneipsm 14836* A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
 
Theoremopnneissb 14837 An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
 
Theoremopnssneib 14838 Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
 
Theoremssnei2 14839 Any subset 𝑀 of 𝑋 containing a neighborhood 𝑁 of a set 𝑆 is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
𝑋 = 𝐽       (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆))
 
Theoremopnneiss 14840 An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.)
((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
 
Theoremopnneip 14841 An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.)
((𝐽 ∈ Top ∧ 𝑁𝐽𝑃𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))
 
Theoremtpnei 14842 The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss 14840. (Contributed by FL, 2-Oct-2006.)
𝑋 = 𝐽       (𝐽 ∈ Top → (𝑆𝑋𝑋 ∈ ((nei‘𝐽)‘𝑆)))
 
Theoremneiuni 14843 The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 9-Apr-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 = ((nei‘𝐽)‘𝑆))
 
Theoremtopssnei 14844 A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015.)
𝑋 = 𝐽    &   𝑌 = 𝐾       (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆))
 
Theoreminnei 14845 The intersection of two neighborhoods of a set is also a neighborhood of the set. Generalization to subsets of Property Vii of [BourbakiTop1] p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁𝑀) ∈ ((nei‘𝐽)‘𝑆))
 
Theoremopnneiid 14846 Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.)
(𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁𝐽))
 
Theoremneissex 14847* For any neighborhood 𝑁 of 𝑆, there is a neighborhood 𝑥 of 𝑆 such that 𝑁 is a neighborhood of all subsets of 𝑥. Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
 
Theorem0nei 14848 The empty set is a neighborhood of itself. (Contributed by FL, 10-Dec-2006.)
(𝐽 ∈ Top → ∅ ∈ ((nei‘𝐽)‘∅))
 
9.1.6  Subspace topologies
 
Theoremrestrcl 14849 Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Jim Kingdon, 23-Mar-2023.)
((𝐽t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V))
 
Theoremrestbasg 14850 A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015.)
((𝐵 ∈ TopBases ∧ 𝐴𝑉) → (𝐵t 𝐴) ∈ TopBases)
 
Theoremtgrest 14851 A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.)
((𝐵𝑉𝐴𝑊) → (topGen‘(𝐵t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴))
 
Theoremresttop 14852 A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
 
Theoremresttopon 14853 A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
 
Theoremrestuni 14854 The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
 
Theoremstoig 14855 The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), (𝐽t 𝐴)⟩} ∈ TopSp)
 
Theoremrestco 14856 Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = (𝐽t (𝐴𝐵)))
 
Theoremrestabs 14857 Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t 𝑆))
 
Theoremrestin 14858 When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.)
𝑋 = 𝐽       ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = (𝐽t (𝐴𝑋)))
 
Theoremrestuni2 14859 The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐴𝑋) = (𝐽t 𝐴))
 
Theoremresttopon2 14860 The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ (TopOn‘(𝐴𝑋)))
 
Theoremrest0 14861 The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.)
(𝐽 ∈ Top → (𝐽t ∅) = {∅})
 
Theoremrestsn 14862 The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
(𝐴𝑉 → ({∅} ↾t 𝐴) = {∅})
 
Theoremrestopnb 14863 If 𝐵 is an open subset of the subspace base set 𝐴, then any subset of 𝐵 is open iff it is open in 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
(((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐽𝐶 ∈ (𝐽t 𝐴)))
 
Theoremssrest 14864 If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐾𝑉𝐽𝐾) → (𝐽t 𝐴) ⊆ (𝐾t 𝐴))
 
Theoremrestopn2 14865 If 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐽𝐵𝐴)))
 
Theoremrestdis 14866 A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.)
((𝐴𝑉𝐵𝐴) → (𝒫 𝐴t 𝐵) = 𝒫 𝐵)
 
9.1.7  Limits and continuity in topological spaces
 
Syntaxccn 14867 Extend class notation with the class of continuous functions between topologies.
class Cn
 
Syntaxccnp 14868 Extend class notation with the class of functions between topologies continuous at a given point.
class CnP
 
Syntaxclm 14869 Extend class notation with a function on topological spaces whose value is the convergence relation for limit sequences in the space.
class 𝑡
 
Definitiondf-cn 14870* Define a function on two topologies whose value is the set of continuous mappings from the first topology to the second. Based on definition of continuous function in [Munkres] p. 102. See iscn 14879 for the predicate form. (Contributed by NM, 17-Oct-2006.)
Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
 
Definitiondf-cnp 14871* Define a function on two topologies whose value is the set of continuous mappings at a specified point in the first topology. Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.)
CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
 
Definitiondf-lm 14872* Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although 𝑓 is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function (𝑥 ∈ ℝ ↦ (sin‘(π · 𝑥))) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006.)
𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
 
Theoremlmrel 14873 The topological space convergence relation is a relation. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Rel (⇝𝑡𝐽)
 
Theoremlmrcl 14874 Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.)
(𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)
 
Theoremlmfval 14875* The relation "sequence 𝑓 converges to point 𝑦 " in a metric space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
(𝐽 ∈ (TopOn‘𝑋) → (⇝𝑡𝐽) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
 
Theoremcnfval 14876* The set of all continuous functions from topology 𝐽 to topology 𝐾. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
 
Theoremcnpfval 14877* The function mapping the points in a topology 𝐽 to the set of all functions from 𝐽 to topology 𝐾 continuous at that point. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
 
Theoremcnovex 14878 The class of all continuous functions from a topology to another is a set. (Contributed by Jim Kingdon, 14-Dec-2023.)
((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
 
Theoremiscn 14879* The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
 
Theoremcnpval 14880* The set of all functions from topology 𝐽 to topology 𝐾 that are continuous at a point 𝑃. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
 
Theoremiscnp 14881* The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
 
Theoremiscn2 14882* The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by Mario Carneiro, 21-Aug-2015.)
𝑋 = 𝐽    &   𝑌 = 𝐾       (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
 
Theoremcntop1 14883 Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
(𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
 
Theoremcntop2 14884 Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
(𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
 
Theoremiscnp3 14885* The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". (Contributed by NM, 15-May-2007.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))))
 
Theoremcnf 14886 A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
𝑋 = 𝐽    &   𝑌 = 𝐾       (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌)
 
Theoremcnf2 14887 A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
 
Theoremcnprcl2k 14888 Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)
 
Theoremcnpf2 14889 A continuous function at point 𝑃 is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
 
Theoremtgcn 14890* The continuity predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 = (topGen‘𝐵))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))       (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
 
Theoremtgcnp 14891* The "continuous at a point" predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 = (topGen‘𝐵))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑𝑃𝑋)       (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
 
Theoremssidcn 14892 The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾𝐽))
 
Theoremicnpimaex 14893* Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.)
(((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴𝐾 ∧ (𝐹𝑃) ∈ 𝐴)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝐴))
 
Theoremidcn 14894 A restricted identity function is a continuous function. (Contributed by FL, 27-Dec-2006.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
(𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
 
Theoremlmbr 14895* Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a topological space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 14872. (Contributed by Mario Carneiro, 14-Nov-2013.)
(𝜑𝐽 ∈ (TopOn‘𝑋))       (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))))
 
Theoremlmbr2 14896* Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Mario Carneiro, 14-Nov-2013.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)       (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
 
Theoremlmbrf 14897* Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. This version of lmbr2 14896 presupposes that 𝐹 is a function. (Contributed by Mario Carneiro, 14-Nov-2013.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹:𝑍𝑋)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)       (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐴𝑢))))
 
Theoremlmconst 14898 A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
𝑍 = (ℤ𝑀)       ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡𝐽)𝑃)
 
Theoremlmcvg 14899* Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑃𝑈)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹(⇝𝑡𝐽)𝑃)    &   (𝜑𝑈𝐽)       (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈)
 
Theoremiscnp4 14900* The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃 " in terms of neighborhoods. (Contributed by FL, 18-Jul-2011.) (Revised by Mario Carneiro, 10-Sep-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >