Theorem List for Intuitionistic Logic Explorer - 14801-14900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | setsmsbasg 14801 |
The base set of a constructed metric space. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
| ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx),
(MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉)
& ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
| |
| Theorem | setsmsdsg 14802 |
The distance function of a constructed metric space. (Contributed by
Mario Carneiro, 28-Aug-2015.)
|
| ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx),
(MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉)
& ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) ⇒ ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
| |
| Theorem | setsmstsetg 14803 |
The topology of a constructed metric space. (Contributed by Mario
Carneiro, 28-Aug-2015.) (Revised by Jim Kingdon, 7-May-2023.)
|
| ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx),
(MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉)
& ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) ⇒ ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) |
| |
| Theorem | mopni 14804* |
An open set of a metric space includes a ball around each of its points.
(Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
| |
| Theorem | mopni2 14805* |
An open set of a metric space includes a ball around each of its points.
(Contributed by NM, 2-May-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴) |
| |
| Theorem | mopni3 14806* |
An open set of a metric space includes an arbitrarily small ball around
each of its points. (Contributed by NM, 20-Sep-2007.) (Revised by
Mario Carneiro, 12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) →
∃𝑥 ∈
ℝ+ (𝑥
< 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)) |
| |
| Theorem | blssopn 14807 |
The balls of a metric space are open sets. (Contributed by NM,
12-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ⊆ 𝐽) |
| |
| Theorem | unimopn 14808 |
The union of a collection of open sets of a metric space is open.
Theorem T2 of [Kreyszig] p. 19.
(Contributed by NM, 4-Sep-2006.)
(Revised by Mario Carneiro, 23-Dec-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) |
| |
| Theorem | mopnin 14809 |
The intersection of two open sets of a metric space is open.
(Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro,
23-Dec-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) |
| |
| Theorem | mopn0 14810 |
The empty set is an open set of a metric space. Part of Theorem T1 of
[Kreyszig] p. 19. (Contributed by NM,
4-Sep-2006.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∅ ∈ 𝐽) |
| |
| Theorem | rnblopn 14811 |
A ball of a metric space is an open set. (Contributed by NM,
12-Sep-2006.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷)) → 𝐵 ∈ 𝐽) |
| |
| Theorem | blopn 14812 |
A ball of a metric space is an open set. (Contributed by NM,
9-Mar-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝐽) |
| |
| Theorem | neibl 14813* |
The neighborhoods around a point 𝑃 of a metric space are those
subsets containing a ball around 𝑃. Definition of neighborhood in
[Kreyszig] p. 19. (Contributed by NM,
8-Nov-2007.) (Revised by Mario
Carneiro, 23-Dec-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) |
| |
| Theorem | blnei 14814 |
A ball around a point is a neighborhood of the point. (Contributed by
NM, 8-Nov-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃})) |
| |
| Theorem | blsscls2 14815* |
A smaller closed ball is contained in a larger open ball. (Contributed
by Mario Carneiro, 10-Jan-2014.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷)
& ⊢ 𝑆 = {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ*
∧ 𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇)) |
| |
| Theorem | metss 14816* |
Two ways of saying that metric 𝐷 generates a finer topology than
metric 𝐶. (Contributed by Mario Carneiro,
12-Nov-2013.) (Revised
by Mario Carneiro, 24-Aug-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
| |
| Theorem | metequiv 14817* |
Two ways of saying that two metrics generate the same topology. Two
metrics satisfying the right-hand side are said to be (topologically)
equivalent. (Contributed by Jeff Hankins, 21-Jun-2009.) (Revised by
Mario Carneiro, 12-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 = 𝐾 ↔ ∀𝑥 ∈ 𝑋 (∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑎 ∈ ℝ+ ∃𝑏 ∈ ℝ+
(𝑥(ball‘𝐶)𝑏) ⊆ (𝑥(ball‘𝐷)𝑎)))) |
| |
| Theorem | metequiv2 14818* |
If there is a sequence of radii approaching zero for which the balls of
both metrics coincide, then the generated topologies are equivalent.
(Contributed by Mario Carneiro, 26-Aug-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑠 ≤ 𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → 𝐽 = 𝐾)) |
| |
| Theorem | metss2lem 14819* |
Lemma for metss2 14820. (Contributed by Mario Carneiro,
14-Sep-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷)
& ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆)) |
| |
| Theorem | metss2 14820* |
If the metric 𝐷 is "strongly finer" than
𝐶
(meaning that there
is a positive real constant 𝑅 such that
𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), then 𝐷 generates a finer
topology. (Using this theorem twice in each direction states that if
two metrics are strongly equivalent, then they generate the same
topology.) (Contributed by Mario Carneiro, 14-Sep-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷)
& ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) ⇒ ⊢ (𝜑 → 𝐽 ⊆ 𝐾) |
| |
| Theorem | comet 14821* |
The composition of an extended metric with a monotonic subadditive
function is an extended metric. (Contributed by Mario Carneiro,
21-Mar-2015.)
|
| ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐹:(0[,]+∞)⟶ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞)) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0))
& ⊢ ((𝜑
∧ (𝑥 ∈ (0[,]+∞) ∧
𝑦 ∈ (0[,]+∞))) →
(𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)))
& ⊢ ((𝜑
∧ (𝑥 ∈ (0[,]+∞) ∧
𝑦 ∈ (0[,]+∞))) →
(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) ⇒ ⊢ (𝜑
→ (𝐹 ∘ 𝐷) ∈ (∞Met‘𝑋)) |
| |
| Theorem | bdmetval 14822* |
Value of the standard bounded metric. (Contributed by Mario Carneiro,
26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
|
| ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) ⇒ ⊢ (((𝐶:(𝑋 × 𝑋)⟶ℝ* ∧ 𝑅 ∈ ℝ*)
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) = inf({(𝐴𝐶𝐵), 𝑅}, ℝ*, <
)) |
| |
| Theorem | bdxmet 14823* |
The standard bounded metric is an extended metric given an extended
metric and a positive extended real cutoff. (Contributed by Mario
Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
|
| ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐷 ∈ (∞Met‘𝑋)) |
| |
| Theorem | bdmet 14824* |
The standard bounded metric is a proper metric given an extended metric
and a positive real cutoff. (Contributed by Mario Carneiro,
26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
|
| ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋)) |
| |
| Theorem | bdbl 14825* |
The standard bounded metric corresponding to 𝐶 generates the same
balls as 𝐶 for radii less than 𝑅.
(Contributed by Mario
Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
|
| ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆)) |
| |
| Theorem | bdmopn 14826* |
The standard bounded metric corresponding to 𝐶 generates the same
topology as 𝐶. (Contributed by Mario Carneiro,
26-Aug-2015.)
(Revised by Jim Kingdon, 19-May-2023.)
|
| ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐶)
⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐽 = (MetOpen‘𝐷)) |
| |
| Theorem | mopnex 14827* |
The topology generated by an extended metric can also be generated by a
true metric. Thus, "metrizable topologies" can equivalently
be defined
in terms of metrics or extended metrics. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) |
| |
| Theorem | metrest 14828 |
Two alternate formulations of a subspace topology of a metric space
topology. (Contributed by Jeff Hankins, 19-Aug-2009.) (Proof shortened
by Mario Carneiro, 5-Jan-2014.)
|
| ⊢ 𝐷 = (𝐶 ↾ (𝑌 × 𝑌)) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷)
⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) = 𝐾) |
| |
| Theorem | xmetxp 14829* |
The maximum metric (Chebyshev distance) on the product of two sets.
(Contributed by Jim Kingdon, 11-Oct-2023.)
|
| ⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
))
& ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) ⇒ ⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) |
| |
| Theorem | xmetxpbl 14830* |
The maximum metric (Chebyshev distance) on the product of two sets,
expressed in terms of balls centered on a point 𝐶 with radius
𝑅. (Contributed by Jim Kingdon,
22-Oct-2023.)
|
| ⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
))
& ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ (𝑋 × 𝑌)) ⇒ ⊢ (𝜑 → (𝐶(ball‘𝑃)𝑅) = (((1st ‘𝐶)(ball‘𝑀)𝑅) × ((2nd ‘𝐶)(ball‘𝑁)𝑅))) |
| |
| Theorem | xmettxlem 14831* |
Lemma for xmettx 14832. (Contributed by Jim Kingdon, 15-Oct-2023.)
|
| ⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
))
& ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ 𝐽 = (MetOpen‘𝑀) & ⊢ 𝐾 = (MetOpen‘𝑁) & ⊢ 𝐿 = (MetOpen‘𝑃)
⇒ ⊢ (𝜑 → 𝐿 ⊆ (𝐽 ×t 𝐾)) |
| |
| Theorem | xmettx 14832* |
The maximum metric (Chebyshev distance) on the product of two sets,
expressed as a binary topological product. (Contributed by Jim
Kingdon, 11-Oct-2023.)
|
| ⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
))
& ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ 𝐽 = (MetOpen‘𝑀) & ⊢ 𝐾 = (MetOpen‘𝑁) & ⊢ 𝐿 = (MetOpen‘𝑃)
⇒ ⊢ (𝜑 → 𝐿 = (𝐽 ×t 𝐾)) |
| |
| 9.2.5 Continuity in metric spaces
|
| |
| Theorem | metcnp3 14833* |
Two ways to express that 𝐹 is continuous at 𝑃 for
metric spaces.
Proposition 14-4.2 of [Gleason] p. 240.
(Contributed by NM,
17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) |
| |
| Theorem | metcnp 14834* |
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
continuous at point 𝑃. (Contributed by NM, 11-May-2007.)
(Revised
by Mario Carneiro, 28-Aug-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦)))) |
| |
| Theorem | metcnp2 14835* |
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
continuous at point 𝑃. The distance arguments are swapped
compared
to metcnp 14834 (and Munkres' metcn 14836) for compatibility with df-lm 14512.
Definition 1.3-3 of [Kreyszig] p. 20.
(Contributed by NM, 4-Jun-2007.)
(Revised by Mario Carneiro, 13-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑤𝐶𝑃) < 𝑧 → ((𝐹‘𝑤)𝐷(𝐹‘𝑃)) < 𝑦)))) |
| |
| Theorem | metcn 14836* |
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
continuous. Theorem 10.1 of [Munkres]
p. 127. The second biconditional
argument says that for every positive "epsilon" 𝑦 there
is a
positive "delta" 𝑧 such that a distance less than delta
in 𝐶
maps to a distance less than epsilon in 𝐷. (Contributed by NM,
15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹‘𝑥)𝐷(𝐹‘𝑤)) < 𝑦)))) |
| |
| Theorem | metcnpi 14837* |
Epsilon-delta property of a continuous metric space function, with
function arguments as in metcnp 14834. (Contributed by NM, 17-Dec-2007.)
(Revised by Mario Carneiro, 13-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
∃𝑥 ∈
ℝ+ ∀𝑦 ∈ 𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝐴)) |
| |
| Theorem | metcnpi2 14838* |
Epsilon-delta property of a continuous metric space function, with
swapped distance function arguments as in metcnp2 14835. (Contributed by
NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
∃𝑥 ∈
ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴)) |
| |
| Theorem | metcnpi3 14839* |
Epsilon-delta property of a metric space function continuous at 𝑃.
A variation of metcnpi2 14838 with non-strict ordering. (Contributed by
NM,
16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
∃𝑥 ∈
ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) |
| |
| Theorem | txmetcnp 14840* |
Continuity of a binary operation on metric spaces. (Contributed by
Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷)
& ⊢ 𝐿 = (MetOpen‘𝐸) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))) |
| |
| Theorem | txmetcn 14841* |
Continuity of a binary operation on metric spaces. (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
| ⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷)
& ⊢ 𝐿 = (MetOpen‘𝐸) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))) |
| |
| Theorem | metcnpd 14842* |
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
continuous at point 𝑃. (Contributed by Jim Kingdon,
14-Jun-2023.)
|
| ⊢ (𝜑 → 𝐽 = (MetOpen‘𝐶)) & ⊢ (𝜑 → 𝐾 = (MetOpen‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦)))) |
| |
| 9.2.6 Topology on the reals
|
| |
| Theorem | qtopbasss 14843* |
The set of open intervals with endpoints in a subset forms a basis for a
topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by
Jim Kingdon, 22-May-2023.)
|
| ⊢ 𝑆 ⊆ ℝ* & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)
⇒ ⊢ ((,) “ (𝑆 × 𝑆)) ∈ TopBases |
| |
| Theorem | qtopbas 14844 |
The set of open intervals with rational endpoints forms a basis for a
topology. (Contributed by NM, 8-Mar-2007.)
|
| ⊢ ((,) “ (ℚ × ℚ))
∈ TopBases |
| |
| Theorem | retopbas 14845 |
A basis for the standard topology on the reals. (Contributed by NM,
6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.)
|
| ⊢ ran (,) ∈ TopBases |
| |
| Theorem | retop 14846 |
The standard topology on the reals. (Contributed by FL, 4-Jun-2007.)
|
| ⊢ (topGen‘ran (,)) ∈
Top |
| |
| Theorem | uniretop 14847 |
The underlying set of the standard topology on the reals is the reals.
(Contributed by FL, 4-Jun-2007.)
|
| ⊢ ℝ = ∪
(topGen‘ran (,)) |
| |
| Theorem | retopon 14848 |
The standard topology on the reals is a topology on the reals.
(Contributed by Mario Carneiro, 28-Aug-2015.)
|
| ⊢ (topGen‘ran (,)) ∈
(TopOn‘ℝ) |
| |
| Theorem | retps 14849 |
The standard topological space on the reals. (Contributed by NM,
19-Oct-2012.)
|
| ⊢ 𝐾 = {〈(Base‘ndx), ℝ〉,
〈(TopSet‘ndx), (topGen‘ran
(,))〉} ⇒ ⊢ 𝐾 ∈ TopSp |
| |
| Theorem | iooretopg 14850 |
Open intervals are open sets of the standard topology on the reals .
(Contributed by FL, 18-Jun-2007.) (Revised by Jim Kingdon,
23-May-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐴(,)𝐵) ∈ (topGen‘ran
(,))) |
| |
| Theorem | cnmetdval 14851 |
Value of the distance function of the metric space of complex numbers.
(Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro,
27-Dec-2014.)
|
| ⊢ 𝐷 = (abs ∘ −
) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
| |
| Theorem | cnmet 14852 |
The absolute value metric determines a metric space on the complex
numbers. This theorem provides a link between complex numbers and
metrics spaces, making metric space theorems available for use with
complex numbers. (Contributed by FL, 9-Oct-2006.)
|
| ⊢ (abs ∘ − ) ∈
(Met‘ℂ) |
| |
| Theorem | cnxmet 14853 |
The absolute value metric is an extended metric. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
| ⊢ (abs ∘ − ) ∈
(∞Met‘ℂ) |
| |
| Theorem | cntoptopon 14854 |
The topology of the complex numbers is a topology. (Contributed by Jim
Kingdon, 6-Jun-2023.)
|
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ 𝐽 ∈
(TopOn‘ℂ) |
| |
| Theorem | cntoptop 14855 |
The topology of the complex numbers is a topology. (Contributed by Jim
Kingdon, 6-Jun-2023.)
|
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ 𝐽 ∈ Top |
| |
| Theorem | cnbl0 14856 |
Two ways to write the open ball centered at zero. (Contributed by Mario
Carneiro, 8-Sep-2015.)
|
| ⊢ 𝐷 = (abs ∘ −
) ⇒ ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅)) |
| |
| Theorem | cnblcld 14857* |
Two ways to write the closed ball centered at zero. (Contributed by
Mario Carneiro, 8-Sep-2015.)
|
| ⊢ 𝐷 = (abs ∘ −
) ⇒ ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅}) |
| |
| Theorem | cnfldms 14858 |
The complex number field is a metric space. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
| ⊢ ℂfld ∈
MetSp |
| |
| Theorem | cnfldxms 14859 |
The complex number field is a topological space. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
| ⊢ ℂfld ∈
∞MetSp |
| |
| Theorem | cnfldtps 14860 |
The complex number field is a topological space. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
| ⊢ ℂfld ∈
TopSp |
| |
| Theorem | cnfldtopn 14861 |
The topology of the complex numbers. (Contributed by Mario Carneiro,
28-Aug-2015.)
|
| ⊢ 𝐽 =
(TopOpen‘ℂfld) ⇒ ⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) |
| |
| Theorem | cnfldtopon 14862 |
The topology of the complex numbers is a topology. (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
| ⊢ 𝐽 =
(TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈
(TopOn‘ℂ) |
| |
| Theorem | cnfldtop 14863 |
The topology of the complex numbers is a topology. (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
| ⊢ 𝐽 =
(TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Top |
| |
| Theorem | unicntopcntop 14864 |
The underlying set of the standard topology on the complex numbers is the
set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(Revised by Jim Kingdon, 12-Dec-2023.)
|
| ⊢ ℂ = ∪
(MetOpen‘(abs ∘ − )) |
| |
| Theorem | unicntop 14865 |
The underlying set of the standard topology on the complex numbers is the
set of complex numbers. (Contributed by Glauco Siliprandi,
11-Dec-2019.)
|
| ⊢ ℂ = ∪
(TopOpen‘ℂfld) |
| |
| Theorem | cnopncntop 14866 |
The set of complex numbers is open with respect to the standard topology
on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(Revised by Jim Kingdon, 12-Dec-2023.)
|
| ⊢ ℂ ∈ (MetOpen‘(abs ∘
− )) |
| |
| Theorem | cnopn 14867 |
The set of complex numbers is open with respect to the standard topology
on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
|
| ⊢ ℂ ∈
(TopOpen‘ℂfld) |
| |
| Theorem | reopnap 14868* |
The real numbers apart from a given real number form an open set.
(Contributed by Jim Kingdon, 13-Dec-2023.)
|
| ⊢ (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran
(,))) |
| |
| Theorem | remetdval 14869 |
Value of the distance function of the metric space of real numbers.
(Contributed by NM, 16-May-2007.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
| |
| Theorem | remet 14870 |
The absolute value metric determines a metric space on the reals.
(Contributed by NM, 10-Feb-2007.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ 𝐷 ∈
(Met‘ℝ) |
| |
| Theorem | rexmet 14871 |
The absolute value metric is an extended metric. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ 𝐷 ∈
(∞Met‘ℝ) |
| |
| Theorem | bl2ioo 14872 |
A ball in terms of an open interval of reals. (Contributed by NM,
18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
| |
| Theorem | ioo2bl 14873 |
An open interval of reals in terms of a ball. (Contributed by NM,
18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) |
| |
| Theorem | ioo2blex 14874 |
An open interval of reals in terms of a ball. (Contributed by Mario
Carneiro, 14-Nov-2013.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ∈ ran (ball‘𝐷)) |
| |
| Theorem | blssioo 14875 |
The balls of the standard real metric space are included in the open
real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario
Carneiro, 13-Nov-2013.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ ran (ball‘𝐷) ⊆ ran
(,) |
| |
| Theorem | tgioo 14876 |
The topology generated by open intervals of reals is the same as the
open sets of the standard metric space on the reals. (Contributed by
NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
|
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ))
& ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 |
| |
| Theorem | tgqioo 14877 |
The topology generated by open intervals of reals with rational
endpoints is the same as the open sets of the standard metric space on
the reals. In particular, this proves that the standard topology on the
reals is second-countable. (Contributed by Mario Carneiro,
17-Jun-2014.)
|
| ⊢ 𝑄 = (topGen‘((,) “ (ℚ
× ℚ))) ⇒ ⊢ (topGen‘ran (,)) = 𝑄 |
| |
| Theorem | resubmet 14878 |
The subspace topology induced by a subset of the reals. (Contributed by
Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Aug-2014.)
|
| ⊢ 𝑅 = (topGen‘ran (,)) & ⊢ 𝐽 = (MetOpen‘((abs ∘
− ) ↾ (𝐴
× 𝐴))) ⇒ ⊢ (𝐴 ⊆ ℝ → 𝐽 = (𝑅 ↾t 𝐴)) |
| |
| Theorem | tgioo2cntop 14879 |
The standard topology on the reals is a subspace of the complex metric
topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by
Jim Kingdon, 6-Aug-2023.)
|
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ (topGen‘ran (,)) = (𝐽 ↾t
ℝ) |
| |
| Theorem | rerestcntop 14880 |
The subspace topology induced by a subset of the reals. (Contributed by
Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
|
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
))
& ⊢ 𝑅 = (topGen‘ran
(,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑅 ↾t 𝐴)) |
| |
| Theorem | tgioo2 14881 |
The standard topology on the reals is a subspace of the complex metric
topology. (Contributed by Mario Carneiro, 13-Aug-2014.)
|
| ⊢ 𝐽 =
(TopOpen‘ℂfld) ⇒ ⊢ (topGen‘ran (,)) = (𝐽 ↾t
ℝ) |
| |
| Theorem | rerest 14882 |
The subspace topology induced by a subset of the reals. (Contributed by
Mario Carneiro, 13-Aug-2014.)
|
| ⊢ 𝐽 =
(TopOpen‘ℂfld) & ⊢ 𝑅 = (topGen‘ran
(,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑅 ↾t 𝐴)) |
| |
| Theorem | addcncntoplem 14883* |
Lemma for addcncntop 14884, subcncntop 14885, and mulcncntop 14886.
(Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon,
22-Oct-2023.)
|
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
))
& ⊢ + :(ℂ ×
ℂ)⟶ℂ
& ⊢ ((𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) →
∃𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝑏)) < 𝑦 ∧ (abs‘(𝑣 − 𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎)) ⇒ ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
| |
| Theorem | addcncntop 14884 |
Complex number addition is a continuous function. Part of Proposition
14-4.16 of [Gleason] p. 243.
(Contributed by NM, 30-Jul-2007.) (Proof
shortened by Mario Carneiro, 5-May-2014.)
|
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
| |
| Theorem | subcncntop 14885 |
Complex number subtraction is a continuous function. Part of
Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by NM,
4-Aug-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
|
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ − ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
| |
| Theorem | mulcncntop 14886 |
Complex number multiplication is a continuous function. Part of
Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by NM,
30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
|
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
| |
| Theorem | divcnap 14887* |
Complex number division is a continuous function, when the second
argument is apart from zero. (Contributed by Mario Carneiro,
12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.)
|
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
))
& ⊢ 𝐾 = (𝐽 ↾t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) ⇒ ⊢ (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽) |
| |
| Theorem | mpomulcn 14888* |
Complex number multiplication is a continuous function. (Contributed by
GG, 16-Mar-2025.)
|
| ⊢ 𝐽 =
(TopOpen‘ℂfld) ⇒ ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
| |
| Theorem | fsumcncntop 14889* |
A finite sum of functions to complex numbers from a common topological
space is continuous. The class expression for 𝐵 normally contains
free variables 𝑘 and 𝑥 to index it.
(Contributed by NM,
8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
|
| ⊢ 𝐾 = (MetOpen‘(abs ∘ −
))
& ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) |
| |
| Theorem | fsumcn 14890* |
A finite sum of functions to complex numbers from a common topological
space is continuous. The class expression for 𝐵 normally contains
free variables 𝑘 and 𝑥 to index it.
(Contributed by NM,
8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
|
| ⊢ 𝐾 =
(TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) |
| |
| Theorem | expcn 14891* |
The power function on complex numbers, for fixed exponent 𝑁, is
continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by
Mario Carneiro, 23-Aug-2014.) Avoid ax-mulf 8021. (Revised by GG,
16-Mar-2025.)
|
| ⊢ 𝐽 =
(TopOpen‘ℂfld) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽)) |
| |
| 9.2.7 Topological definitions using the
reals
|
| |
| Syntax | ccncf 14892 |
Extend class notation to include the operation which returns a class of
continuous complex functions.
|
| class –cn→ |
| |
| Definition | df-cncf 14893* |
Define the operation whose value is a class of continuous complex
functions. (Contributed by Paul Chapman, 11-Oct-2007.)
|
| ⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ
↦ {𝑓 ∈ (𝑏 ↑𝑚
𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)}) |
| |
| Theorem | cncfval 14894* |
The value of the continuous complex function operation is the set of
continuous functions from 𝐴 to 𝐵. (Contributed by Paul
Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
|
| ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = {𝑓 ∈ (𝐵 ↑𝑚 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) |
| |
| Theorem | elcncf 14895* |
Membership in the set of continuous complex functions from 𝐴 to
𝐵. (Contributed by Paul Chapman,
11-Oct-2007.) (Revised by Mario
Carneiro, 9-Nov-2013.)
|
| ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
| |
| Theorem | elcncf2 14896* |
Version of elcncf 14895 with arguments commuted. (Contributed by
Mario
Carneiro, 28-Apr-2014.)
|
| ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)))) |
| |
| Theorem | cncfrss 14897 |
Reverse closure of the continuous function predicate. (Contributed by
Mario Carneiro, 25-Aug-2014.)
|
| ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) |
| |
| Theorem | cncfrss2 14898 |
Reverse closure of the continuous function predicate. (Contributed by
Mario Carneiro, 25-Aug-2014.)
|
| ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) |
| |
| Theorem | cncff 14899 |
A continuous complex function's domain and codomain. (Contributed by
Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro,
25-Aug-2014.)
|
| ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
| |
| Theorem | cncfi 14900* |
Defining property of a continuous function. (Contributed by Mario
Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.)
|
| ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+) →
∃𝑧 ∈
ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅)) |