Theorem List for Intuitionistic Logic Explorer - 14801-14900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | cnmpt1t 14801* |
The composition of continuous functions is continuous. (Contributed by
Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ (𝐽 Cn (𝐾 ×t 𝐿))) |
| |
| Theorem | cnmpt12f 14802* |
The composition of continuous functions is continuous. (Contributed
by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀)) |
| |
| Theorem | cnmpt12 14803* |
The composition of continuous functions is continuous. (Contributed by
Mario Carneiro, 12-Jun-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → (𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) & ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐷) ∈ (𝐽 Cn 𝑀)) |
| |
| Theorem | cnmpt1st 14804* |
The projection onto the first coordinate is continuous. (Contributed by
Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
| |
| Theorem | cnmpt2nd 14805* |
The projection onto the second coordinate is continuous. (Contributed
by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
| |
| Theorem | cnmpt2c 14806* |
A constant function is continuous. (Contributed by Mario Carneiro,
5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑃 ∈ 𝑍) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| |
| Theorem | cnmpt21 14807* |
The composition of continuous functions is continuous. (Contributed
by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → (𝑧 ∈ 𝑍 ↦ 𝐵) ∈ (𝐿 Cn 𝑀)) & ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) |
| |
| Theorem | cnmpt21f 14808* |
The composition of continuous functions is continuous. (Contributed
by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) & ⊢ (𝜑 → 𝐹 ∈ (𝐿 Cn 𝑀)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐹‘𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) |
| |
| Theorem | cnmpt2t 14809* |
The composition of continuous functions is continuous. (Contributed by
Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝐴, 𝐵〉) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀))) |
| |
| Theorem | cnmpt22 14810* |
The composition of continuous functions is continuous. (Contributed
by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) & ⊢ (𝜑 → (𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 ↦ 𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) & ⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐷) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
| |
| Theorem | cnmpt22f 14811* |
The composition of continuous functions is continuous. (Contributed by
Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
| |
| Theorem | cnmpt1res 14812* |
The restriction of a continuous function to a subset is continuous.
(Contributed by Mario Carneiro, 5-Jun-2014.)
|
| ⊢ 𝐾 = (𝐽 ↾t 𝑌)
& ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋)
& ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
| |
| Theorem | cnmpt2res 14813* |
The restriction of a continuous function to a subset is continuous.
(Contributed by Mario Carneiro, 6-Jun-2014.)
|
| ⊢ 𝐾 = (𝐽 ↾t 𝑌)
& ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋)
& ⊢ 𝑁 = (𝑀 ↾t 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑊 ⊆ 𝑍)
& ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿)) |
| |
| Theorem | cnmptcom 14814* |
The argument converse of a continuous function is continuous.
(Contributed by Mario Carneiro, 6-Jun-2014.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿)) |
| |
| Theorem | imasnopn 14815 |
If a relation graph is open, then an image set of a singleton is also
open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26.
(Contributed by Thierry Arnoux, 14-Jan-2018.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴 ∈ 𝑋)) → (𝑅 “ {𝐴}) ∈ 𝐾) |
| |
| 9.1.10 Homeomorphisms
|
| |
| Syntax | chmeo 14816 |
Extend class notation with the class of all homeomorphisms.
|
| class Homeo |
| |
| Definition | df-hmeo 14817* |
Function returning all the homeomorphisms from topology 𝑗 to
topology 𝑘. (Contributed by FL, 14-Feb-2007.)
|
| ⊢ Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)}) |
| |
| Theorem | hmeofn 14818 |
The set of homeomorphisms is a function on topologies. (Contributed by
Mario Carneiro, 23-Aug-2015.)
|
| ⊢ Homeo Fn (Top × Top) |
| |
| Theorem | hmeofvalg 14819* |
The set of all the homeomorphisms between two topologies. (Contributed
by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)}) |
| |
| Theorem | ishmeo 14820 |
The predicate F is a homeomorphism between topology 𝐽 and topology
𝐾. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL,
14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
| ⊢ (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽))) |
| |
| Theorem | hmeocn 14821 |
A homeomorphism is continuous. (Contributed by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| |
| Theorem | hmeocnvcn 14822 |
The converse of a homeomorphism is continuous. (Contributed by Mario
Carneiro, 22-Aug-2015.)
|
| ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
| |
| Theorem | hmeocnv 14823 |
The converse of a homeomorphism is a homeomorphism. (Contributed by FL,
5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
| ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾Homeo𝐽)) |
| |
| Theorem | hmeof1o2 14824 |
A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → 𝐹:𝑋–1-1-onto→𝑌) |
| |
| Theorem | hmeof1o 14825 |
A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.)
(Revised by Mario Carneiro, 30-May-2014.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→𝑌) |
| |
| Theorem | hmeoima 14826 |
The image of an open set by a homeomorphism is an open set. (Contributed
by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
| ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ∈ 𝐽) → (𝐹 “ 𝐴) ∈ 𝐾) |
| |
| Theorem | hmeoopn 14827 |
Homeomorphisms preserve openness. (Contributed by Jeff Madsen,
2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐹 “ 𝐴) ∈ 𝐾)) |
| |
| Theorem | hmeocld 14828 |
Homeomorphisms preserve closedness. (Contributed by Jeff Madsen,
2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹 “ 𝐴) ∈ (Clsd‘𝐾))) |
| |
| Theorem | hmeontr 14829 |
Homeomorphisms preserve interiors. (Contributed by Mario Carneiro,
25-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐾)‘(𝐹 “ 𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴))) |
| |
| Theorem | hmeoimaf1o 14830* |
The function mapping open sets to their images under a homeomorphism is
a bijection of topologies. (Contributed by Mario Carneiro,
10-Sep-2015.)
|
| ⊢ 𝐺 = (𝑥 ∈ 𝐽 ↦ (𝐹 “ 𝑥)) ⇒ ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐺:𝐽–1-1-onto→𝐾) |
| |
| Theorem | hmeores 14831 |
The restriction of a homeomorphism is a homeomorphism. (Contributed by
Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌)Homeo(𝐾 ↾t (𝐹 “ 𝑌)))) |
| |
| Theorem | hmeoco 14832 |
The composite of two homeomorphisms is a homeomorphism. (Contributed by
FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
|
| ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽Homeo𝐿)) |
| |
| Theorem | idhmeo 14833 |
The identity function is a homeomorphism. (Contributed by FL,
14-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
|
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽Homeo𝐽)) |
| |
| Theorem | hmeocnvb 14834 |
The converse of a homeomorphism is a homeomorphism. (Contributed by FL,
5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
| ⊢ (Rel 𝐹 → (◡𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) |
| |
| Theorem | txhmeo 14835* |
Lift a pair of homeomorphisms on the factors to a homeomorphism of
product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐽Homeo𝐿)) & ⊢ (𝜑 → 𝐺 ∈ (𝐾Homeo𝑀)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) ∈ ((𝐽 ×t 𝐾)Homeo(𝐿 ×t 𝑀))) |
| |
| Theorem | txswaphmeolem 14836* |
Show inverse for the "swap components" operation on a Cartesian
product.
(Contributed by Mario Carneiro, 21-Mar-2015.)
|
| ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = ( I ↾ (𝑋 × 𝑌)) |
| |
| Theorem | txswaphmeo 14837* |
There is a homeomorphism from 𝑋 × 𝑌 to 𝑌 × 𝑋. (Contributed
by Mario Carneiro, 21-Mar-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽))) |
| |
| 9.2 Metric spaces
|
| |
| 9.2.1 Pseudometric spaces
|
| |
| Theorem | psmetrel 14838 |
The class of pseudometrics is a relation. (Contributed by Jim Kingdon,
24-Apr-2023.)
|
| ⊢ Rel PsMet |
| |
| Theorem | ispsmet 14839* |
Express the predicate "𝐷 is a pseudometric".
(Contributed by
Thierry Arnoux, 7-Feb-2018.)
|
| ⊢ (𝑋 ∈ 𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
| |
| Theorem | psmetdmdm 14840 |
Recover the base set from a pseudometric. (Contributed by Thierry
Arnoux, 7-Feb-2018.)
|
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) |
| |
| Theorem | psmetf 14841 |
The distance function of a pseudometric as a function. (Contributed by
Thierry Arnoux, 7-Feb-2018.)
|
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| |
| Theorem | psmetcl 14842 |
Closure of the distance function of a pseudometric space. (Contributed
by Thierry Arnoux, 7-Feb-2018.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈
ℝ*) |
| |
| Theorem | psmet0 14843 |
The distance function of a pseudometric space is zero if its arguments
are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) |
| |
| Theorem | psmettri2 14844 |
Triangle inequality for the distance function of a pseudometric.
(Contributed by Thierry Arnoux, 11-Feb-2018.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) |
| |
| Theorem | psmetsym 14845 |
The distance function of a pseudometric is symmetrical. (Contributed by
Thierry Arnoux, 7-Feb-2018.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
| |
| Theorem | psmettri 14846 |
Triangle inequality for the distance function of a pseudometric space.
(Contributed by Thierry Arnoux, 11-Feb-2018.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) |
| |
| Theorem | psmetge0 14847 |
The distance function of a pseudometric space is nonnegative.
(Contributed by Thierry Arnoux, 7-Feb-2018.) (Revised by Jim Kingdon,
19-Apr-2023.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) |
| |
| Theorem | psmetxrge0 14848 |
The distance function of a pseudometric space is a function into the
nonnegative extended real numbers. (Contributed by Thierry Arnoux,
24-Feb-2018.)
|
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
| |
| Theorem | psmetres2 14849 |
Restriction of a pseudometric. (Contributed by Thierry Arnoux,
11-Feb-2018.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅)) |
| |
| Theorem | psmetlecl 14850 |
Real closure of an extended metric value that is upper bounded by a
real. (Contributed by Thierry Arnoux, 11-Mar-2018.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ) |
| |
| Theorem | distspace 14851 |
A set 𝑋 together with a (distance) function
𝐷
which is a
pseudometric is a distance space (according to E. Deza, M.M. Deza:
"Dictionary of Distances", Elsevier, 2006), i.e. a (base) set
𝑋
equipped with a distance 𝐷, which is a mapping of two elements
of
the base set to the (extended) reals and which is nonnegative, symmetric
and equal to 0 if the two elements are equal. (Contributed by AV,
15-Oct-2021.) (Revised by AV, 5-Jul-2022.)
|
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ (𝐴𝐷𝐴) = 0) ∧ (0 ≤ (𝐴𝐷𝐵) ∧ (𝐴𝐷𝐵) = (𝐵𝐷𝐴)))) |
| |
| 9.2.2 Basic metric space
properties
|
| |
| Syntax | cxms 14852 |
Extend class notation with the class of extended metric spaces.
|
| class ∞MetSp |
| |
| Syntax | cms 14853 |
Extend class notation with the class of metric spaces.
|
| class MetSp |
| |
| Syntax | ctms 14854 |
Extend class notation with the function mapping a metric to the metric
space it defines.
|
| class toMetSp |
| |
| Definition | df-xms 14855 |
Define the (proper) class of extended metric spaces. (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
| ⊢ ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) =
(MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} |
| |
| Definition | df-ms 14856 |
Define the (proper) class of metric spaces. (Contributed by NM,
27-Aug-2006.)
|
| ⊢ MetSp = {𝑓 ∈ ∞MetSp ∣
((dist‘𝑓) ↾
((Base‘𝑓) ×
(Base‘𝑓))) ∈
(Met‘(Base‘𝑓))} |
| |
| Definition | df-tms 14857 |
Define the function mapping a metric to the metric space which it defines.
(Contributed by Mario Carneiro, 2-Sep-2015.)
|
| ⊢ toMetSp = (𝑑 ∈ ∪ ran
∞Met ↦ ({〈(Base‘ndx), dom dom 𝑑〉, 〈(dist‘ndx), 𝑑〉} sSet
〈(TopSet‘ndx), (MetOpen‘𝑑)〉)) |
| |
| Theorem | metrel 14858 |
The class of metrics is a relation. (Contributed by Jim Kingdon,
20-Apr-2023.)
|
| ⊢ Rel Met |
| |
| Theorem | xmetrel 14859 |
The class of extended metrics is a relation. (Contributed by Jim
Kingdon, 20-Apr-2023.)
|
| ⊢ Rel ∞Met |
| |
| Theorem | ismet 14860* |
Express the predicate "𝐷 is a metric". (Contributed by
NM,
25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))) |
| |
| Theorem | isxmet 14861* |
Express the predicate "𝐷 is an extended metric".
(Contributed by
Mario Carneiro, 20-Aug-2015.)
|
| ⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
| |
| Theorem | ismeti 14862* |
Properties that determine a metric. (Contributed by NM, 17-Nov-2006.)
(Revised by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ 𝑋 ∈ V & ⊢ 𝐷:(𝑋 × 𝑋)⟶ℝ & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
& ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) ⇒ ⊢ 𝐷 ∈ (Met‘𝑋) |
| |
| Theorem | isxmetd 14863* |
Properties that determine an extended metric. (Contributed by Mario
Carneiro, 20-Aug-2015.)
|
| ⊢ (𝜑 → 𝑋 ∈ V) & ⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| |
| Theorem | isxmet2d 14864* |
It is safe to only require the triangle inequality when the values are
real (so that we can use the standard addition over the reals), but in
this case the nonnegativity constraint cannot be deduced and must be
provided separately. (Counterexample:
𝐷(𝑥, 𝑦) = if(𝑥 = 𝑦, 0, -∞) satisfies all
hypotheses
except nonnegativity.) (Contributed by Mario Carneiro,
20-Aug-2015.)
|
| ⊢ (𝜑 → 𝑋 ∈ V) & ⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ (𝑥𝐷𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| |
| Theorem | metflem 14865* |
Lemma for metf 14867 and others. (Contributed by NM,
30-Aug-2006.)
(Revised by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) |
| |
| Theorem | xmetf 14866 |
Mapping of the distance function of an extended metric. (Contributed by
Mario Carneiro, 20-Aug-2015.)
|
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| |
| Theorem | metf 14867 |
Mapping of the distance function of a metric space. (Contributed by NM,
30-Aug-2006.)
|
| ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
| |
| Theorem | xmetcl 14868 |
Closure of the distance function of a metric space. Part of Property M1
of [Kreyszig] p. 3. (Contributed by
NM, 30-Aug-2006.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈
ℝ*) |
| |
| Theorem | metcl 14869 |
Closure of the distance function of a metric space. Part of Property M1
of [Kreyszig] p. 3. (Contributed by
NM, 30-Aug-2006.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
| |
| Theorem | ismet2 14870 |
An extended metric is a metric exactly when it takes real values for all
values of the arguments. (Contributed by Mario Carneiro,
20-Aug-2015.)
|
| ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) |
| |
| Theorem | metxmet 14871 |
A metric is an extended metric. (Contributed by Mario Carneiro,
20-Aug-2015.)
|
| ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| |
| Theorem | xmetdmdm 14872 |
Recover the base set from an extended metric. (Contributed by Mario
Carneiro, 23-Aug-2015.)
|
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷) |
| |
| Theorem | metdmdm 14873 |
Recover the base set from a metric. (Contributed by Mario Carneiro,
23-Aug-2015.)
|
| ⊢ (𝐷 ∈ (Met‘𝑋) → 𝑋 = dom dom 𝐷) |
| |
| Theorem | xmetunirn 14874 |
Two ways to express an extended metric on an unspecified base.
(Contributed by Mario Carneiro, 13-Oct-2015.)
|
| ⊢ (𝐷 ∈ ∪ ran
∞Met ↔ 𝐷 ∈
(∞Met‘dom dom 𝐷)) |
| |
| Theorem | xmeteq0 14875 |
The value of an extended metric is zero iff its arguments are equal.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| |
| Theorem | meteq0 14876 |
The value of a metric is zero iff its arguments are equal. Property M2
of [Kreyszig] p. 4. (Contributed by
NM, 30-Aug-2006.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| |
| Theorem | xmettri2 14877 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) |
| |
| Theorem | mettri2 14878 |
Triangle inequality for the distance function of a metric space.
(Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro,
20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) |
| |
| Theorem | xmet0 14879 |
The distance function of a metric space is zero if its arguments are
equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by Mario
Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) |
| |
| Theorem | met0 14880 |
The distance function of a metric space is zero if its arguments are
equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by NM,
30-Aug-2006.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) |
| |
| Theorem | xmetge0 14881 |
The distance function of a metric space is nonnegative. (Contributed by
Mario Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) |
| |
| Theorem | metge0 14882 |
The distance function of a metric space is nonnegative. (Contributed by
NM, 27-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) |
| |
| Theorem | xmetlecl 14883 |
Real closure of an extended metric value that is upper bounded by a
real. (Contributed by Mario Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ) |
| |
| Theorem | xmetsym 14884 |
The distance function of an extended metric space is symmetric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
| |
| Theorem | xmetpsmet 14885 |
An extended metric is a pseudometric. (Contributed by Thierry Arnoux,
7-Feb-2018.)
|
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋)) |
| |
| Theorem | xmettpos 14886 |
The distance function of an extended metric space is symmetric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → tpos 𝐷 = 𝐷) |
| |
| Theorem | metsym 14887 |
The distance function of a metric space is symmetric. Definition
14-1.1(c) of [Gleason] p. 223.
(Contributed by NM, 27-Aug-2006.)
(Revised by Mario Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
| |
| Theorem | xmettri 14888 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by Mario
Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) |
| |
| Theorem | mettri 14889 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by NM,
27-Aug-2006.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵))) |
| |
| Theorem | xmettri3 14890 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶))) |
| |
| Theorem | mettri3 14891 |
Triangle inequality for the distance function of a metric space.
(Contributed by NM, 13-Mar-2007.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶))) |
| |
| Theorem | xmetrtri 14892 |
One half of the reverse triangle inequality for the distance function of
an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐶) +𝑒
-𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵)) |
| |
| Theorem | metrtri 14893 |
Reverse triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon,
21-Apr-2023.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) |
| |
| Theorem | metn0 14894 |
A metric space is nonempty iff its base set is nonempty. (Contributed
by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) |
| |
| Theorem | xmetres2 14895 |
Restriction of an extended metric. (Contributed by Mario Carneiro,
20-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) |
| |
| Theorem | metreslem 14896 |
Lemma for metres 14899. (Contributed by Mario Carneiro,
24-Aug-2015.)
|
| ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
| |
| Theorem | metres2 14897 |
Lemma for metres 14899. (Contributed by FL, 12-Oct-2006.) (Proof
shortened by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅)) |
| |
| Theorem | xmetres 14898 |
A restriction of an extended metric is an extended metric. (Contributed
by Mario Carneiro, 24-Aug-2015.)
|
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋 ∩ 𝑅))) |
| |
| Theorem | metres 14899 |
A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.)
(Revised by Mario Carneiro, 14-Aug-2015.)
|
| ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋 ∩ 𝑅))) |
| |
| Theorem | 0met 14900 |
The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario
Carneiro, 14-Aug-2015.)
|
| ⊢ ∅ ∈
(Met‘∅) |