Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > olci | GIF version |
Description: Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
orci.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
olci | ⊢ (𝜓 ∨ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orci.1 | . 2 ⊢ 𝜑 | |
2 | olc 701 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ∨ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: falortru 1397 sucidg 4394 finexdc 6868 finomni 7104 indpi 7283 1ap0 8488 iap0 9080 pnf0xnn0 9184 bcn1 10671 sum0 11329 prod0 11526 odd2np1lem 11809 lcm0val 11997 ex-or 13613 dcapnconst 13949 |
Copyright terms: Public domain | W3C validator |