ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falbitru GIF version

Theorem falbitru 1417
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falbitru ((⊥ ↔ ⊤) ↔ ⊥)

Proof of Theorem falbitru
StepHypRef Expression
1 bicom 140 . 2 ((⊥ ↔ ⊤) ↔ (⊤ ↔ ⊥))
2 trubifal 1416 . 2 ((⊤ ↔ ⊥) ↔ ⊥)
31, 2bitri 184 1 ((⊥ ↔ ⊤) ↔ ⊥)
Colors of variables: wff set class
Syntax hints:  wb 105  wtru 1354  wfal 1358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator