Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > falbitru | GIF version |
Description: A ↔ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
falbitru | ⊢ ((⊥ ↔ ⊤) ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 139 | . 2 ⊢ ((⊥ ↔ ⊤) ↔ (⊤ ↔ ⊥)) | |
2 | trubifal 1406 | . 2 ⊢ ((⊤ ↔ ⊥) ↔ ⊥) | |
3 | 1, 2 | bitri 183 | 1 ⊢ ((⊥ ↔ ⊤) ↔ ⊥) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ⊤wtru 1344 ⊥wfal 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |