| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > falbitru | GIF version | ||
| Description: A ↔ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| falbitru | ⊢ ((⊥ ↔ ⊤) ↔ ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 140 | . 2 ⊢ ((⊥ ↔ ⊤) ↔ (⊤ ↔ ⊥)) | |
| 2 | trubifal 1427 | . 2 ⊢ ((⊤ ↔ ⊥) ↔ ⊥) | |
| 3 | 1, 2 | bitri 184 | 1 ⊢ ((⊥ ↔ ⊤) ↔ ⊥) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1365 ⊥wfal 1369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |